4p~EvoStream

EvoStream Media Server
API Definition

Table of Contents

TABLE OF CONTENTS...citttuuiiiiiiitniiiiniiiuniiiiinnuniiitenssiiistisassiiisttssssiistesssssisseessssestesssssisstssssssssssssssssssesssssssssessssssssssssssssssssanss 2

DEFINITION OF TERIMISuiiiiitiiiiiiiiinniiiitiiineiiiitnassiiiiessssiistiessssiistessssiissesssssissessssssssssssssssssessssssssssssssssssssssssssssssssssssssansssnns 5

USER DEFINED VARIABLESvttetiuttteeseuttteesueteessuteeesaseeessausseessssseeessssseessnssesssnsssessnnsseessassseessssssessnssseessnssseesssesesssseeessnsssessnnsenees 8
STREAMS VS STREAM CONFIGS AND AP COMMAND RETURN VALUEScvtteiitteeeesitteeeaitteessiteeessnsteeessssesesnsseeessssseeessssesssssseesssssseessnssees 9
R A g=Te [W Oe Ty 1o KOO UPUUNE 10
STFOAIMS e e e e e e e s e e e e e e e e e e e e e e e e e aeaeae e e e e e e e e aaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaes 10
EVOSTREAM MEDIA SERVER APlccovuuuuiiiiiiiiiiiiiiiiiiiiesssssssssssiiiisiiiiiiimessssssssssssssssssisssssmmmesssssssssssssssssssssssssssssessssssssssss 11
STREAMS teeeutteeeeutteeseueteesautteesssteeesaassaessasseeesansseeesssaeessastaeesaseeessasaaeeeaaseeeesnssaeesaaseaeeesbaeesansbaeesanseaeesnnbaeesansseeessseeesnnssenennnns 11
Jo10 1Y A= 1 £ OSSR UPUUNE
pushStream
CPEATEHLSSTIOAM ..ottt e e e s 17
CLEATEHDSSTIOOM ...ttt s 20
CLEATEIMISSSTIOOM ..ottt s 23
[Jole o TR TUTIP 26
L [Y ole Lo [PPSR 27
R A=t [a g Lo KRR TUTTIPN 32
Lo L R Y T =1e 110 L) o T U UUUT P 32
R (=T [TR
getStreamsCount
shutdownStream
L (0o 1o TS PR
L1 aa Lo 2V =100 1) o IO USSR
addStreamAlias
HISESErEAMAINIGSES ...ttt ettt e e et e e ettt e ettt e e ettt e e ettt e s et e e e sttt e e e st e e e s assseaeaatseaeenataesssssneasnassnaanas 40
FEMOVESTIEAIMAIIGS ..ottt ettt et e e ettt e et e e ettt e e ettt e e et e e e sttt e e e atte e s e ssteeeaatteaeenataessaassneasanssaaanns 41
JIUSASTrEAMALIGSES ...ttt e ettt e e e e e e ettt e e e e e ettt tasaaaaeeeesatsssasaaaeeaasssstsssaaaeeeasasssssesaaaeesassssens 41
Lol To L= oo T2 1 o] [1 SO 42
LT 1o X =] [T T=2] A ade) [L SRS 42
JISEINGE@STPOINTS ...ttt e ettt e e e e ettt e e e e e e ettt e e e e e e ee e s tassaaaaaeeeeesastsasaaaaeeassatsssesaaaaesaasssssanaaaseeasasssssesaaens 43
UTILITY AND FEATURE API FUNCTIONS «...ttitiiitteeiitteeestteeeseiteeessuteeessstaeeesausaeeessseeeesaseeeesansseessnsseaessnsseeesnnsseessnsseeessnseeeesnssseesnnssees 44
o101 Tol] o Yol 2 X USRI 44
setTimer
listTimers

FOIMMOVETIMICY oot e et ee e e e e e et tte e e e e e e sttt e e e e e e s et ae e e e e e sastaae e e e s e s ataaaee e s s s e ssaaeee e s e sasaaaeeesssssaaaaneesssssssananeesssses 46

© 2013 EvoStream, Inc. All rights reserved. Page 2 of 77

insertPlaylistitem

L R Y oo o T2 USSR
Lo o [0 R o) e [o [USSR
Q=g LodV =R (o) g (o IO ORISR PPPPPTIINN
setAuthentication
LY=o Moo | == BSOS UUUUUUNE
VBISION ...ttt ettt e+ ettt e+ e ettt 44 e e e uatt e et e e e e ea e uattteeeeeeeeeauhatee et e eeea e uatheeeeeeeeeaashbteeeeeeeeaaannteeeaeeeeaaaas 52
Lo 10 1 SO 52
DYBID ettt e e e e et e —————teeeeeeii—————ateeeaiai——————taeeaaai——b——taaeeeaaiata———aaeeeaaaittraataaeeeaaartarrraaes 52
K 171 de Lo =1 4= U ST R URTPR 53
CONNECTIONS +eeuttteeeautteeesnurteesaseeeesausaeesssseeesnssaeeesassaaesassaeessassaeesasseeeessseeesassseesassesesssssessnssseessnssenessnssesesssseessnsseeesnnsseesnssees 54
JISECONNECHIONSIAS ..ottt ettt e ettt e e et e e ettt e e e sttt e e st e e e sttt e e aaatse e e assteeeaatseaesnatsesssssneasnnssaasens 54
GELCONNECLIONINSO ...ttt e e e e ettt e e e e e ettt aaaaeeea s attsasaaaeeeasatsssesaaaeeaasssssasaaaseeasasssssanaaeas 54
listConnections

getExtendedConnectionCounters

J Y01 LoD C oo (0o TV T 1 (=T TP TUT RPN
resetTotalFdCounters
getConnectionsCount
GELCONNECEIONSCOUNTLIMIL covoveveveeeeeeeeeeeeeeeeeeeeeeeee ettt a e s e s e s s sasasesasesasasens 57
SEECONNECLIONSCOUNTLIMIT....ccceeeeieeeeeee ettt ettt e e ettt e e e e ettt e e e e e e e e aast e e e e e e e eeastseneeaaeeeaaaaannnen 57
Jo L=t =10 o Lo 1Y/ o o BTSRRI 58
RY=24200 ol 11 [o 111 T ST PR 59
SERVICES..eteeeeiieeenireeesnireeesnreeeesnnenas
listServices
(o= L (=R Y=] 4 ol TP PP PPPTTP U PIPPI
(L0l] o) (A=] Lol =2
shutdownService
EMS EVENT NOTIFICATION SYSTEIM ...cuiiuiiiuiiiuiiieiieiiiiiaiieiiaiirsiiiusisesiesstsssiossisssiassssssrassssssssstssssssssssstasssssstasssssssasssnsssnsses 64
STREAM EVENT DEFINITIONSetteeeetttteentteessurteesasreeesasseeessssaeessnsseessnsssesssnsssssssssssessnsssessnssssesssssesesssssessnsseesssnssseessseeessnsseeesnnne 65
inStreamCreated, outStreamCreated, StrEAMUCIEALETuueeuuuuuuuuireieiiiieeissssssssssssssssssssessssssssssesesesesesens 65
inStreamClosed, outStreamClOSEd, STrEAMUCIOSEU.ueueeeeevureuerieiiiiiise s ssssssssssssssssssesssasssssaesesesesesens 67
inStreamCodecsUpdated, outStreamCodecsUpdated, streamCodecsUpdated...............cccoccvvuveeeieeesesiiiireeeaeeeeesciivvenannn. 69
ADAPTIVE STREAMING/FILE-BASED STREAMING EVENTS ..ee.uvteeteeitieeiteeestteessteessseessseesseesssesansaeesesessseesssessssessssessnsessnsessnsesssssesssseens
hisChunkCreated, hdsChunkCreated, mssChunkCreated....
hisChunkClosed, hdsChunkCloSed, MSSCAUNKCIOSEUuuuueeeuuuuuuuririiriieieiieiiiisiiaiisissssssssssssssssssssssssssssssssseseseses
hiIsChunkError, NASCAUNKEITOr, MSSCRAUNKEITOLuveveveveeeeerieeeiiieaiiiiiiiaessasssssssssssssssssssnsssnssnnnssssssssssssssssssssssssssssseseses
hisChildPlaylistUpdated, hdsChildPIQYlISTUDAGEEU............ccc..eueeeeeieeeeeeeeeeeee ettt e e ettt a e e e e e st a e e e e e sssstssaaaaeas
hisMasterPlaylistUpdated, hdsMasterPlaylistUpdated
L0 1o VTR 0 oo Lo [=L USRI
APT BASED EVENTS ...ttteieuitteeeiutteeeeitteeseuteeesutteesasteeesusaeessastaeesaaseeessasaaeeeasseeeesnssaeesaasesaessbaeesanssaeesanseaeeasbaeesanssneesnssaaessnsseeesnnns 72
Lol 12 {=Te [V 1= SRR 72
Lol 12 0=X Lo £ K-SR 72
ProCesSStArted, PrOCESSSTOPPEU.oeveeeeeeeeeee et e ettt e e e e e e e ettt e e e e e e ettt sseaaaeeesasasssesaaaeeeassstsasesaaeeessssnsees 73
(10114 O g =T [(=T TSP PPPUPPRNE 73
010 aT=Ta N g [[(=1 =T AT PPN 73

© 2013 EvoStream, Inc. All rights reserved. Page 3 of 77

timerClosed

CONNECTION BASED EVENTS 1.uvvteuteeiuteeeteesteestesestteesteeesssaessseessseessseessseesssesensesansssansssessssssssessssessssessnsessnsesessssensssesssessseesssessnses 74
Jo) el de o) [t=te [RY A= =te oYY o] o TSP U U UPUURNE 74
PrOtOCOIUNTEGISTEIEUFTOMADD ... eeeeeeee e e e ettt e e e e e ettt e e e e e e e e st aaaaaeeeeasstsssaaaaeeesasssssassaaaseeasssssssesasaeesassnsees 74
(ol [4 114 614 -1 [{1 USRI 74
(ol [4 114 6 [0 K- AT UT RPN

APPLICATION BASED EVENTS

lofoo)[[oleLaTeY N Y (o [aMe oY o) [lale L4 o] g R Y o]« OSSR 75
R Y= QYT R o [1= BTSSR ST PP 76
Y= V=T o] o oYL PSSP UUUUNE 76
EVENT TABLE OF PROTOCOL TYPEScuiiuiiiuiituiiteiieiiesiaiiuiiiairsisrusiresiesstessiosstassiasssssstsssssssssssssstssssssstasssssstasssssssasssnsssnsses 77

© 2013 EvoStream, Inc. All rights reserved. Page 4 of 77

Definition of Terms

EMS EvoStream Media Server

HTTP Hyper-Text Transfer Protocol. The basic protocol used for web-page
loading and web browsing. Also used for tunneling by many protocols.
TCP based.

IDR Instantaneous Decoding Refresh — This is a specific packet in the H.264
video encoding specification. It is a full snapshot of the video at a
specific instance (one full frame). Video players require an IDR frame
to start playing any video. “Frames” that occur between IDR Frames
are simply offsets/differences from the first IDR.

JSON JavaScript Object Notation

Lua A lightweight multi-paradigm programming language

RTCP Real Time Control Protocol — An protocol that is typically used with
RTSP to synchronize two RTP streams, often audio and video streams

RTMP Real Time Messaging Protocol — Used with Adobe Flash players

RTMPT Real Time Messaging Protocol Tunneled — Essentially RTMP over HTTP

RTP Real-time Transport Protocol — A simple protocol used to stream data,
typically audio or video data.

RTSP Real Time Streaming Protocol — Used with Android devices and live
streaming clients like VLC or Quicktime. RTSP does not actually
transport the audio/video data, it is simply a negotiation protocol. It is
normally paired with a protocol like RTP, which will handle the actual
data transport.

swfURL Used in the RTMP protocol, this field is used to designate the
URL/address of the Adobe Flash Applet being used to generate the
stream (if any).

tcURL Used in the RTMP protocol, this field is used to designate the
URL/address of the originating stream server.

TOS Type of Service. This is a field in IPv4 packets used by routers to
determine how traffic should be dispersed, usually for prioritizing
packets.

TTL Time To Live. This is a field in Ipv4 packets used by routers to
determine how many gateways/routers the packet should be able to
pass through.

URI Universal Resource ldentifier. The generic form of a URL. URI’s are
used to specify the location and type of streams.

URL Uniform Resource Locator. This is a specific form of the URI used for
web browsing (http://ip/page).

VoD Video On Demand

© 2013 EvoStream, Inc. All rights reserved.

Page 5 of 77

Overview

This document describes the Application Programming Interface (API) and the Event Notification System
presented by the EvoStream Media Server (EMS). The API provides the ability to manipulate the server at
runtime. The server can be told to retrieve or create new streams, return information on streams and
connections, or even start or stop functional services. The Event Notification System provides a means for the
EMS to alert users of certain events that occur within the EMS, such as a new stream is created, a stream has
been dropped, server stopped, etc. The EvoStream Media Server APl and Event Notification System allows users

to tightly integrate with the server without having to write native plugins or modules.

Accessing the Runtime API

The EvoStream Media Server (EMS) API can be accessed in two ways. The first is through an ASCII telnet
interface. The second is by using HTTP requests. The APl is identical for both methods of access.

The API functions parameters are NOT case sensitive.

ASCII
The ASCII interface is often the first interface used by users. It can be accessed easily through the telnet

application (available on all operating systems) or through common scripting languages.

To access the API via the telnet interface, a telnet application will need to be launched on the same computer
that the EMS is running on. The command to open telnet from a command prompt should look something like

the following:

telnet localhost 1112

If you are on Windows 7 you may need to enable telnet. To do this, go to the Control Panel -> Programs -> Turn

Windows Features on and off. Turn the telnet program on.

Please also note that on Windows, the default telnet behavior will need to be changed. You will need to turn
local echo and new line mode on for proper behavior. Once you have entered telnet, exit the telnet session by
typing “ctrl+]”. Then enter the following commands:

set localecho
set crlf

Press Enter/Return again to return to the Windows telnet session.

Once the telnet session is established, you can type out commands that will be immediately executed on the

server.

An example of a command request/response from a telnet session would be the following:

© 2013 EvoStream, Inc. All rights reserved. Page 6 of 77

Request:

version

Response:

{"data":"1.5","description":"Version","status":"SUCCESS"}

HTTP

To access the API via the HTTP interface, you simply need to make an HTTP request on the server with the
command you wish to execute. By default, the port used for these HTTP requests is 7777. The HTTP interface
port can be changed in the main configuration file used by the EMS (typically config.lua).

All of the API functions are available via HTTP, but the request must be formatted slightly differently. To make

an API call over HTTP, you must use the following general format:

http://IP:7777/functionName?params=base64(firstParam=XXX secondParam=YYY ..)

In example, to call pullStream on an EMS running locally you would first need to base64 encode your
parameters:

Base64(uri=rtmp://IP/live/myStream localstreamname=testStream) results in:
dXJpPXJObXA6LY9IUC9saXZ1L215U3RyZWFtIGxVY2Fsc3RyZWFtbmFtZT10ZXNOU3RyZWFt

http://192.168.5.5:7777/pullstream?params=
dXJpPXJObXA6LY9IUC9saXZ1L215U3RyZWFtIGxVY2Fsc3RyZWFtbmFtZT10ZXNOU3RyZWFt

PHP and JavaScript

PHP and JavaScript functions are also provided. These functions simply wrap the HTTP interface calls. They can

be found in the web_ui directory.

JSON

The EMS API provides return responses from most of the APl functions. These responses are formatted in JSON
so that they can be easily parsed and used by third party systems and applications. These responses will be
identical, regardless of whether you are using the ASCIl or HTTP interface.

When using the ASCII interface, it may be necessary to use a JSON interpreter so that responses can be more
human-readable. A good JSON interpreter can be found at: http://chris.photobooks.com/json/default.ntm or at

http://json.parser.online.fr/.

© 2013 EvoStream, Inc. All rights reserved. Page 7 of 77

Configuring and Receiving Event Notifications

The EvoStream Media Server (EMS) generates notifications based upon events that occur at runtime. These
events are formatted as HTTP calls and can be delivered to any address and port desired.

Event Notifications are disabled by default and must be enabled by modifying the EMS config file: config.lua.

To enable Event Notifications you will need to enable/uncomment the eventLogger section of the config.lua file.
Comments in LUA are specified by either a “—*“ for a single line, or denoted by a “—[[“ to start a comment block
and a “]]—“ to end a comment block. By default the eventLogger section is commented out using the block style
comments, so you will need to remove both the —[[and]]—strings.

Sinks

Sinks are defined as “a specific destination for events” and can be of two types: “file” and “RPC”. File sinks
simply write events to a file, as defined by the “filename” parameter. This works much like a system logger.
Users can choose the format of the output between JSON, XML and text. JSON and XML will be formatted as
JSON and XML respectively and each event will be written to a single line. This is done for ease of parsing. The
Text format writes to the event file in a way that is easy to read, where events are on multiple lines.

To receive HTTP based Event Notifications, an RPC type sink must be defined (and is by default). The URL
parameter defines the location that will be called with each event. The URL can be a specific web service script
or just an IP and port on which you are listening. RPC sinks have the option of one of three serializer types, or in
other words, the way the data will be formatted within the HTTP post: JSON, XML, XMLRPC. XMLRPC events
will be formatted as XML using a traditional XML-RPC schema. The XML serializer type will use an XML schema
that is more condensed and specific to the EMS Event Notification System. The JSON serializer type will have
the same schema as XML, but will be formatted as JSON.

For any Sink, users can define an array of enabledEvents. When this array is present, ONLY the events listed will
be sent to that sink. If this array is not present, ALL events will be sent to the sink. The full list of events can be
found later in this document.

User Defined Variables

While the EMS provides an extensive set of APl functions, there may be times where the variables provided are
not sufficient, or where you may need extra information to be associated with individual streams. To support
these needs, the EMS APl implements User Defined Variables. User Defined Variables can be used with any API
function where information is maintained by the EMS (I.E.: Pulling a stream, creating a timer, starting a
transcode job, etc).

To specify a User Defined Variable, you simply need to append a ‘*_’ to the beginning of your variable name.

© 2013 EvoStream, Inc. All rights reserved. Page 8 of 77

The User Defined variables are reported back whenever you get information about the command: listStreams,
listConfig, Event Notifications, etc.

Some common use cases for User Defined Variables are as follows:

* Setting a timer to stop a stream after a set period of time

setTimer value=120 _streamName=MyStream

setTimer value=120 _streamID=5

These commands will fire a timer event after 120 seconds with the set stream name or stream id
respectively.

e Attach a custom identifier to a local stream

pullstream uri=rtmp://192.168.1.5/live/myStream localstreamname=testl _myID=5
_myName=secretSquirrel

* Setacustom value on a pushed stream

pushstream uri=rtmp://192.168.1.5/live/myStream localstreamname=testl _mylD=5
_myName=secretSquirrel

Streams vs Stream Configs and API Command Return Values

Issuing commands to the EvoStream Media Server is an Asynchronous event. This means that a successfully
issued command will not actually be executed immediately. It will instead be Queued for execution. While this
generally transparent for the user, there is an important ramification of this reality:

When the EMS returns SUCCESS for an issued APl command, this only means tha the command was
succesfully QUEUED. IT DOES NOT MEAN THAT THE COMMAND WAS SUCCESSFULLY EXECUTED! For example,
a pullStream command may return SUCCESS, but the steam may not have actually been pulled!

More details on why this occurs follows.

© 2013 EvoStream, Inc. All rights reserved. Page 9 of 77

Stream Configs

When an APl command is issued, it creates a Stream Config entry. Each Stream Config is a list of parameters
which instructs EMS to take an action. As a result of that action, a stream may be born. At the time at which the
command is executed (stream config is created), there is absolutely no guarantee that the action will indeed
spawn a stream. There is a very good reason for this behavior. The action itself doesn't solely depend on EMS. In
the case of pullStream, the success of the command greatly depends on the distant party being invoked to send
the stream in question. If that distant party doesn't do that, then the stream can't be created. To summarize,

stream config is only the blueprint of the future stream, nothing less, and nothing more.

Stream Configs also have a unique, monotonically increasing ID. This is completely different from the "stream
id". When listConfig is used, it will output the format described in the "API Definiion.pdf". Notice the configld
value for each node. The listing of the configurations also contains the current status of the stream and the
previous status. Finally, removeConfig can be used to terminate a configuration and the corresponding stream
(if ever spawned)

Streams

Streams are the active streams currently managed by EMS. They may or may not have an associated config. That
is because the stream could be pushed/pulled into/from EMS by a distant party, without any execution of a
pushStream/pullStream command. For example, an Adobe flash application does a “publish” or a “play”.
However, when a stream is born due to a pullStream/pushStream/etc API command, that stream Will have an
associated config. listStreams will list all streams regardless of their nature: pulled/pushed by EMS or from 3rd
party apps like explained in the Adobe example above. When a stream is actively pushed/pulled by EMS, the
node describing that stream will also contain a sub node with the configuration (the stream config explained
above). shutdownStream, as the name implies, acts on a stream, not on a stream config. That is why you can't
do a shutdownStream on a stream name which is not present BUT was configured. The permanently=1
parameter is provided to save an extra call to removeConfig call, but, again, that is only making sense when the
stream is active. The streams information returned by listStreams contains a unique id for each and every
stream node. That is what we refer to as "stream id".

To summarize the above: streamiD is different from configID because they signify two
different kinds of entities.

© 2013 EvoStream, Inc. All rights reserved. Page 10 of 77

EvoStream Media Server API

The EMS API can be broken down into a few groups of functionality. The first group, and the one most often
used, is Stream Manipulation. The other groups are Connection Details and Services which are discussed later in

the document.

Each API function is listed along with its mandatory and optional parameters. Examples of each interface can be

found after the description of function parameters.

PLEASE NOTE:
All Boolean parameters are set using 1 for true and 0 for false!
Default values of parameters shown in parentheses or italicized are just remarks.

Streams

Streams are considered to be the actual video and/or audio feeds that are coming from, or going to, the EMS.
Streams can be sent over a wide variety of protocols. The following functions are provided to manipulate and

query Streams:

IMPORTANT: All Stream Names are case sensitive for all APl functions!

pullStream

This will try to pull in a stream from an external source. Once a stream has been successfully pulled it is assigned
a “local stream name” which can be used to access the stream from the EMS.

This function has the following parameters:

Parameter Name Mandatory Default Value Description

uri true (null) The URI of the external stream. Can be RTMP, RTSP
or unicast/multicast (d)mpegts.

keepAlive false 1 (true) If keepAlive is set to 1, the server will attempt to
reestablish connection with a stream source after a
connection has been lost. The reconnect will be
attempted once every second.

localStreamName false (computed) If provided, the stream will be given this name.
Otherwise, a fallback technique is used to determine
the stream name (based on the URI)

forceTcp false 1 (true) If 1 and if the stream is RTSP, a TCP connection will
be forced. Otherwise the transport mechanism will
be negotiated (UDP or TCP).

© 2013 EvoStream, Inc. All rights reserved. Page 11 of 77

Parameter Name Mandatory Default Value Description

tcUrl false (zero-length When specified, this value will be used to set the TC
string) URL in the initial RTMP connect invoke

pageUrl false (zero-length When specified, this value will be used to set the
string) originating web page address in the initial RTMP

connect invoke.

swfUrl false (zero-length When specified, this value will be used to set the
string) originating swf URL in the initial RTMP connect
invoke
rangeStart false -2 For RTSP and RTMP connections. A value from which

the playback should start expressed in seconds.
There are 2 special values: -2 and -1. For more
information, please read about start/len parameters
here:
http://livedocs.adobe.com/flashmediaserver/3.0/hp
docs/help.html?content=00000185.html

rangeEnd false -1 The length in seconds for the playback. -1 is a special
value. For more information, please read about
start/len parameters here:
http://livedocs.adobe.com/flashmediaserver/3.0/hp
docs/help.html?content=00000185.html

ttl false operating Sets the IP_TTL (time to live) option on the socket
system supplied

tos false operating Sets the IP_TOS (Type of Service) option on the
system supplied = socket

rtcpDetectioninterval false 10 How much time (in seconds) should the server wait
for RTCP packets before declaring the RTSP stream as
a RTCP-less stream

emulateUserAgent false (EvoStream When specified, this value will be used as the user
message) agent string. It is meaningful only for RTMP.
isAudio true if uriis 1 (true) If 1 and if the stream is RTP, it indicates that the
RTP, currently pulled stream is an audio source. Otherwise

© 2013 EvoStream, Inc. All rights reserved. Page 12 of 77

Parameter Name Mandatory Default Value Description

otherwise the pulled source is assumed as a video source.
false
audioCodecBytes true if uriis (zero-length The audio codec setup of this RTP stream if it is
RTP and string) audio. Represented as hex format without '0x' or 'h'.
isAudio is (For example: audioCodecBytes=1190)
true,
otherwise
false
spsBytes true if uriis (zero-length The video SPS bytes of this RTP stream if it is video. It
RTP and string) should be base 64 encoded.
isAudio is
false,
otherwise
false
ppsBytes true if uriis (zero-length The video PPS bytes of this RTP stream if it is video. It
RTP and string) should be base 64 encoded.
isAudio is
false,
otherwise
false
ssmip false (zero-length The source IP from source-specific-multicast. Only
string) usable when doing UDP based pull
httpProxy False (zero-length This parameter has two valid values:
string)

1) IP:Port —This value combination specifies an
RTSP HTTP Proxy from which the RTSP
stream should be pulled from

2) self — Specifying “self” as the value implies
pulling RTSP over HTTP.

The EMS provides several shorthand User Agent strings (not case-sensitive) for convenience:
emulateUserAgent=FMLE Resolves as “FMLE/3.0 (compatible; FMSc/1.0)”
emulateUserAgent=wirecast Resolves as “Wirecast/FM 1.0 (compatible; FMSc/1.0)”

emulateUserAgent=evo Resolves as “EvoStream Media Server (www.evostream.com) player”
emulateUserAgent=flash Resolves as “MAC 11,3,300,265”

© 2013 EvoStream, Inc. All rights reserved. Page 13 of 77

An example of the pullStream interface is:

pullStream uri=rtsp://AddressOfStream keepAlive=1 localStreamname=livetest

Then, to access that stream via a flash player, the following URI can be used:

rtmp://AddressOfEMS/live/livetest

Another example of the pullStream interface would be:

pullStream uri=rtp://AddressOfStream keepAlive=1 localStreamname=livetest
isAudio=0 spsBytes=ZOLAHpZiA2P8vCAAAAMAIAAABgHixck= ppsBytes=aMuMsg==

The JSON response for pullStream contains the following details:
¢ data-—The data to parse.
o configID — The configuration ID for this command
emulateUserAgent — This is the string that the EMS uses to identify itself with the other server. It
can be modified so that EMS identifies itself as, say, a Flash Media Server.
forceTcp — Whether TCP MUST be used, or if UDP can be used.
height — An optional description of the video stream’s pixel height.
keepAlive — If true, the stream will attempt to reconnect if the connection is severed.
localStreamName — The local name for the stream.
pageUrl — A link to the page that originated the request (often unused).
rtcpDetectioninterval — Used for RTSP. This is the time period the EMS waits to determine if an RTCP
connection is available for the RTSP/RTP stream. (RTSP is used for synchronization between audio
and video).
swfUrl — The location of the Flash Client that is generating the stream (if any).
tcUrl — An RTMP parameter that is essentially a copy of the URI.
tos — Type of Service network flag.
ttl — Time To Live network flag.
uri — Contains key/value pairs describing the source stream’s URI.
= document — The document name of the source stream.
= documentPath — The document path of the source stream.
= documentWithFullParameters — The document name with parameters of the source stream.
= fullParameters — The parameters for the source stream’s URI.
= fullUri — The full URI of the source stream.
= fullUriwithAuth — The full URI with authentication of the source stream.
= host— Name of the source stream’s host.
= jp—IP address of the source stream’s host.
= originalUri — The source stream’s URI where it was generated.
= parameters — Parameters for the source stream’s URI (if any).
= password — Password for authenticating the source stream (if required).
= port— Port used by the source stream.
= portSpecified — True if the port for the source stream is specified.
= scheme — The protocol used by the source stream.
= userName — The user name for authenticating the source stream (if required).
o width — An optional description of the video stream’s pixel width.

o

O O O O O O

O 0O O O O

* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.
A typical response in parsed JSON format is shown here: pullStream

© 2013 EvoStream, Inc. All rights reserved. Page 14 of 77

pushStream

This will try to push a local stream to an external destination. The pushed stream can only use the RTMP, RTSP

or MPEG-TS unicast/multicast protocol. This function has the following parameters:

Parameter Name

uri true

localStreamName true

tos false

keepAlive false

targetStreamName false

targetStreamType false

emulateUserAgent false

rtmpAbsoluteTimes false

tamps

swfUrl false
pageUrl false
tcUrl false
ttl false

© 2013 EvoStream, Inc. All rights reserved.

Mandatory Default Value

(null)

(computed)

operating
system supplied

1 (true)

(null)

live

(EvoStream

message)

O(false)

(zero-length
string)

(zero-length
string)

(zero-length
string)

OS supplied

Description

The URI of the destination point (without stream name).

If provided, the stream will be given this name. Otherwise, a
fallback technique is used to determine the stream name
(based on the URI).

Sets the IP_TOS (Type of Service) option on the socket.

If keepAlive is set to 1, the server will attempt to reestablish
connection with a stream source after a connection has
been lost. The reconnect will be attempted once every
second.

The name of the stream at destination. If not provided, the
target stream name will be the same as the local stream

name.

It can be one of following: live, record, append. It is
meaningful only for RTMP.

When specified, this value will be used as the user agent
string. It is meaningful only for RTMP.

Forces the timestamps to be absolute when using RTMP

When specified, this value will be used to set the originating
swf URL in the initial RTMP connect invoke

When specified, this value will be used to set the originating
web page address in the initial RTMP connect invoke.

When specified, this value will be used to set the TC URL in
the initial RTMP connect invoke

Sets the IP_TTL (Time To Live) option on the socket.

Page 15 of 77

For the EmulateUserAgent parameter, the EMS provides several shorthand User Agent strings (not case-

sensitive) for convenience:
emulateUserAgent=FMLE Resolves as “FMLE/3.0 (compatible; FMSc/1.0)”
emulateUserAgent=wirecast Resolves as “Wirecast/FM 1.0 (compatible; FMSc/1.0)”

emulateUserAgent=evo Resolves as “EvoStream Media Server (www.evostream.com)”
emulateUserAgent=flash Resolves as “MAC 11,3,300,265”
An example of the pullStream interface is:

pushStream uri=rtmp://DestinationAddress keepAlive=1 localStreamname=pushtest

The JSON response contains the following details:

¢ data - The data to parse.

configlD — The configuration ID for this command

emulateUserAgent — This is the string that the EMS uses to identify itself with the other server. It
can be modified so that EMS identifies itself as, say, a Flash Media Server.

forceTcp — Whether TCP MUST be used, or if UDP can be used.

keepAlive — If true, the stream will attempt to reconnect if the connection is severed.
localStreamName — The local name for the stream.

pageUrl — A link to the page that originated the request (often unused).

swfUrl — The location of the Flash Client that is generating the stream (if any).
targetStreamName — The name of the stream at destination.

targetStreamType — One of following: ‘live’, ‘record’, "append’. Useful only for RTMP.
targetUri — Contains key/value pairs describing the destination stream’s URI.

e}

o

O 0 O o0 O O 0 O

o
o
o
o

document — The document name of the destination stream.

documentPath — The document path of the destination stream.
documentWithFullParameters — The document name with parameters of the destination
stream.

fullDocumentPath — The document path of the destination stream.
fullDocumentPathWithParameters — The document path with parameters of the destination
stream.

fullParameters — The parameters for the destination stream’s URI.

fullUri — The full URI of the destination stream.

fullUriwithAuth — The full URI with authentication of the destination stream.

host — The name of the destination stream’s host.

ip — The IP address of the destination stream’s host.

originalUri — The destination stream’s URI where it was generated.

parameters — Parameters for the destination stream’s URI.

password — Password for authenticating the destination stream (if required).

port — Port used by the destination stream.

portSpecified — True if the port for the destination stream is specified.

scheme — The protocol used by the destination stream.

userName — The user name for authenticating the destination stream (if required).

tcUrl — An RTMP parameter that is essentially a copy of the URI.

tos — Type of Service network flag.

ttl — Time To Live network flag.

status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.
A typical response in parsed JSON format is shown here: pushStream

© 2013 EvoStream, Inc. All rights reserved. Page 16 of 77

createHLSStream
Create an HTTP Live Stream (HLS) out of an existing H.264/AAC stream. HLS is used to stream live feeds to iOS
devices such as iPhones and iPads.

This function has the following parameters:

Parameter Name Mandatory Default Value Description

localStreamNames true (null) The stream(s) that will be used as the input. This is
a comma-delimited list of active stream names
(local stream names).

targetFolder true (null) The folder where all the *.ts/*.m3u8 files will be
stored. This folder must be accessible by the HLS
clients. It is usually in the web-root of the server.

keepAlive false 1 (true) If true, the EMS will attempt to reconnect to the
stream source if the connection is severed.

overwriteDestination false 1 (true) If true, it will force overwrite of destination files.

staleRetentionCount false (if not specified, it The number of old files kept besides the ones listed
will have the value in the current version of the playlist. Only
of playlistLength) applicable for rolling playlists.

createMasterPlaylist false 1 (true) If true, a master playlist will be created.

cleanupDestination false (null) If 1 (true), all *.ts and *.m3u8 files in the target
folder will be removed before HLS creation is
started.

bandwidths false (null) The corresponding bandwidths for each stream
listed in localStreamNames. Again, this can be a
comma-delimited list.

groupName false (it will be a random = The name assigned to the HLS stream or group. If
name in the form the localStreamNames parameter contains only
of hls_group_xxxx) one entry and groupName is not specified,
groupName will have the value of the input stream

name.

playlistType false appending Either “appending’ or ‘rolling’.

© 2013 EvoStream, Inc. All rights reserved. Page 17 of 77

playlistLength false 10 The length (number of elements) of the playlist.
Used only when playlistType is “rolling’. Ignored

otherwise.
playlistName false playlist. m3u8 The file name of the playlist (*.m3u8).
chunkLength false 10 The length (in seconds) of each playlist element

(*.ts file). Minimum value is 1 (second).
chunkBaseName false segment The base name used to generate the *.ts chunks.

chunkOnIDR false 1 (true) If true, chunking is performed ONLY on IDR.
Otherwise, chunking is performed whenever chunk
length is achieved.

drmType false None Sets the type of DRM encryption to use. Options
are: none (no encryption), evo (AES Encryption),
verimatrix (Verimatrix DRM).
For Verimatrix DRM, the “drm” section of the
config.lua file must be active and properly
configured.

AESKeyCount false 5 Specifies the number of keys that will be
automatically generated and rotated over while
encrypting this HLS stream.

An example of the createHLSStream interface is:

createHLSStream localstreamnames=hlstest bandwidths=128 targetfolder=/MyWebRoot/
groupname=hls playlisttype=rolling playlistLength=10 chunkLength=5

The corresponding link to use on an iOS device to pull this stream would then be:

http://My_IP or Domain/hls/playlist.m3u8

In other words: http://<my_web_server>/<HLS_group_name>/<playlist_file_name>

© 2013 EvoStream, Inc. All rights reserved. Page 18 of 77

The JSON response contains the following details:
¢ data-—The data to parse.

o
o

o

O 0O O O O O O 0 O O O

e}

bandwidths — An array of integers specifying the bandwidths used for streaming.

chunkBaseName — The base name or prefix used for naming the output HLS chunks.

chunkLength — The length (in seconds) of each playlist element (*.ts file). If 0, chunking is made on
IDR boundary.

chunkOnldr — If true, chunking was made on IDR boundary.

cleanupDestination — If true, HLS files at the target folder were deleted before HLS creation began.
createMasterPlaylist — If true, a master playlist is created.

groupName — The name of the target folder where HLS files will be created.

keepAlive — If true, the stream will attempt to reconnect if the connection is severed.
localStreamNames — An array of local names for the streams.

overwriteDestination — If true, forced overwrite was enabled during HLS creation.

playlistLength — The number of elements in the playlist. Useful only for “rolling” playlistType.
playlistName — The file name of the playlist (*.m3u8).

playlistType — Either “appending’ or ‘rolling".

staleRetentionCount — The number of old files kept besides the ones listed in the current version of
the playlist. Only applicable for rolling playlists.

targetFolder — The folder where all the *.ts/*.m3us8 files are stored.

* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: createHLSStream

© 2013 EvoStream, Inc. All rights reserved. Page 19 of 77

createHDSStream

Create an HDS (HTTP Dynamic Streaming) stream out of an existing H.264/AAC stream. HDS is used to stream

standard MP4 media over regular HTTP connections. HDS is a new technology developed by Adobe in response

to HLS from Apple.

This function has the following parameters:

Parameter Name

localStreamNames

targetFolder

bandwidths

chunkBaseName

chunkLength

chunkOnIDR

groupName

keepAlive

manifestName

© 2013 EvoStream, Inc. All rights reserved.

Mandatory Default Value

true

true

false

false

false

false

false

false

false

(null)

(null)

(null)

fav

10

1 (true)

(it will be a random
name in the form
of hds_group_xxxx)

1 (true)

defaults to stream

Description

The stream(s) that will be used as the input. This is
a comma-delimited list of active stream names
(local stream names).

The folder where all the manifest (*.f4m) and
fragment (f4v*) files will be stored. This folder
must be accessible by the HDS clients. It is usually
in the web-root of the server.

The corresponding bandwidths for each stream
listed in localStreamNames. Again, this can be a
comma-delimited list.

The base name used to generate the fragments.
The default value follows this format: f4vSegl-
FragXXX.

The length (in seconds) of fragments to be made.
Minimum value is 1 (second).

If true, chunking is performed ONLY on IDR.
Otherwise, chunking is performed whenever chunk
length is achieved.

The name assigned to the HDS stream or group. If
the localStreamNames parameter contains only
one entry and groupName is not specified,
groupName will have the value of the input stream

name.

If true, the EMS will attempt to reconnect to the
stream source if the connection is severed.

The manifest file name.

Page 20 of 77

name

overwriteDestination false 1 (true) If true, it will allow overwrite of destination files.
playlistType false appending Either “appending’ or ‘rolling’.
playlistLength false 10 The number of fragments before the server starts

to overwrite the older fragments. Used only when
playlistType is ‘rolling". Ignored otherwise.

staleRetentionCount false If not specified, it How many old files are kept besides the ones
will have the value present in the current version of the playlist. Only

of playlistLength applicable for rolling playlists.
createMasterPlaylist false 1 (true) If true, a master playlist will be created.
cleanupDestination false 0 (false) If 1 (true), all manifest and fragment files in the

target folder will be removed before HDS creation
is started.

An example of the createHDSStream interface is:

createHDSStream localstreamnames=hdstest bandwidths=128 targetfolder=/MyWebRoot/
groupname=hds rolling=true rollinglLimit=10 chunkLength=5

The corresponding link to use on an HDS player (e.g. OSMF) to pull this stream would then be:

http://My_IP or_Domain/hds/manifest.f4m

In other words: http://<my_web_server>/<HDS_group_name>/<manifest_file_name>

The JSON response contains the following details:
¢ data-—The data to parse.
o bandwidths — An array of integers specifying the bandwidths used for streaming.
o chunkBaseName — The base name or prefix used for naming the output HDS chunks.

o chunkLength — The length (in seconds) of each playlist element (*.ts file). If 0, chunking is made on
IDR boundary.

o chunkOnldr — If true, chunking was made on IDR boundary.

o cleanupDestination — If true, HDS files at the target folder were deleted before HDS creation began.

o createMasterPlaylist — If true, a master playlist is created.

o groupName — The name of the target folder where HDS files will be created.

o keepAlive — If true, the stream will attempt to reconnect if the connection is severed.

o localStreamNames — An array of local names for the streams.

© 2013 EvoStream, Inc. All rights reserved. Page 21 of 77

* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown below:

{

}

o manifestName — The file name of the manifest file (*.f4m). If blank, defaults to stream name.
o overwriteDestination — If true, overwriting of destination files during HDS creation is allowed.
o playlistLength — The number of fragments before the server starts to overwrite the older fragments.

Useful only for ‘rolling™ playlistType.
o playlistType — Either "appending’ or ‘rolling’.

o staleRetentionCount — The number of old files kept besides the ones listed in the current version of

the playlist. Only applicable for rolling playlists.

o targetFolder — The folder where all the manifest (*.f4m) and fragment (f4v*) files are stored.

"data":{
"bandwidths":[0],
"chunkBaseName":"f4v",
"chunkLength":10,
"chunkOnIDR":true,
"cleanupDestination":false,
"configlds":[3],
"createMasterPlaylist":true,
"groupName":"group",
"keepAlive":true,
"localStreamNames":["stream1"],
"manifestName":"",
"overwriteDestination":true,
"playlistLength":10,
"playlistType":"appending",
"staleRetentionCount":10,
"targetFolder":"\var\www\htdocs\\hds"

2

"description":"HDS stream created",
"status":"SUCCESS"

© 2013 EvoStream, Inc. All rights reserved.

Page 22 of 77

createMSSStream

Create a Microsoft Smooth Stream (MSS) out of an existing H.264/AAC stream. Smooth Streaming was

developed by Microsoft to compete with other adaptive streaming technologies.

This function has the following parameters:

Parameter Name

localStreamNames

targetFolder

bandwidths

groupName

playlistType

playlistLength

manifestName

chunkLength

chunkOnIDR

keepAlive

© 2013 EvoStream, Inc. All rights reserved.

Mandatory Default Value

true

true

false

false

false

false

false

false

false

false

(null)

(null)

(null)

mss_group_xxxx
(random)

appending

10

'manifest’

10

0 (false)

1 (true)

Description

The stream(s) that will be used as the input. This is
a comma-delimited list of active stream names
(local stream names).

The folder where all the manifest and fragment
files will be stored. This folder must be accessible
by the MSS clients. It is usually in the web-root of
the server.

The corresponding bandwidths for each stream
listed in localStreamNames. Again, this can be a
comma-delimited list.

The name assigned to the MSS stream or group. If
the localStreamNames parameter contains only
one entry and groupName is not specified,
groupName will have the value of the input stream

name.

Either “appending’ or ‘rolling

The number of fragments before the server starts
to overwrite the older fragments. Used only when
playlistType is 'rolling'. Ignored otherwise.

The manifest file name

The length (in seconds) of fragments to be made.

If 1 (true), chunking is performed ONLY on IDR.
Otherwise, chunking is performed whenever chunk
length is achieved.

If 1 (true), the EMS will attempt to reconnect to the
stream source if the connection is severed.

Page 23 of 77

overwriteDestination false 1 (true) If 1 (true), it will allow overwrite of destination
files.

staleRetentionCount false If not specified, it How many old files are kept besides the ones
will have the value present in the current version of the playlist. Only
of playlistLength applicable for rolling playlists.

cleanupDestination false 0 (false) If 1 (true), all manifest and fragment files in the
target folder will be removed before MSS creation
is started.

An example of the createMSSStream interface is:

createMSSStream localstreamnames=msstest bandwidth=128 targetfolder=/MyWebRoot/
groupname=groupl rolling=true rollinglLimit=10 chunkLength=10

To playback the created MSS stream, use a Smooth Streaming player such as one of the following:

* http://smf.cloudapp.net/healthmonitor

* http://playready.directtaps.net/pr/doc/slee/

Enter the following stream URL:

http://My_IP or_ Domain/groupl/manifest

In other words: http://<my_web_server>/<MSS_group_name>/<manifest_file_name>

The JSON response contains the following details:
¢ data - The data to parse.
bandwidths — An array of integers specifying the bandwidths used for streaming.
chunkLength — The length (in seconds) of each chunk. If 0, chunking is made on IDR boundary.
chunkOnldr — If true, chunking was made on IDR boundary.
cleanupDestination — If true, MSS files at the target folder were deleted before MSS creation began.
groupName — The name of the target folder where MSS files will be created.
keepAlive — If true, the stream will attempt to reconnect if the connection is severed.
localStreamNames — An array of local names for the streams.
manifestName — The file name of the manifest file. If blank, defaults to ‘manifest’.
overwriteDestination — If true, overwriting of destination files during MSS creation is allowed.
playlistLength — The number of fragments before the server starts to overwrite the older fragments.
Useful only for ‘rolling™ playlistType.
playlistType — Either “appending’ or ‘rolling".

o staleRetentionCount — The number of old files kept besides the ones listed in the current version of

the manifest. Only applicable to rolling playlist type.

o targetFolder — The folder where all the manifest and chunk files are stored.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

O 0O O O O O 0O O O O

o

© 2013 EvoStream, Inc. All rights reserved. Page 24 of 77

A typical response in parsed JSON format is shown below:

{

"data":{
"bandwidths":[0],
"chunkLength":10,
"chunkOnIDR":true,
"cleanupDestination":false,
"configlds":[3],
"groupName":"group",
"keepAlive":true,
"localStreamNames":["stream1"],
"manifestName":"",
"overwriteDestination":true,
"playlistLength":10,
"playlistType":"appending",
"staleRetentionCount":10,

"targetFolder":"\var\www\htdocs\\mss"

© 2013 EvoStream, Inc. All rights reserved.

Page 25 of 77

record

Records any inbound stream. The record command allows users to record a stream that may not yet exist.

When a new stream is brought into the server, it is checked against a list of streams to be recorded.

Streams can be recorded as FLV files, MPEG-TS files or as MP4 files.

Parameter Name Mandatory Default Value Description

localStreamName true (null) The name of the stream to be used as input for
recording.

pathToFile true (null) Specify path and file name to write to.

type false mp4 “ts”, “mp4” or “flv”.

overwrite false 0 (false) If false, when a file already exists for the stream
name, a new file will be created with the next
appropriate number appended. If 1 (true), files
with the same name will be overwritten.

keepAlive false 1 (true) If 1 (true), the server will restart recording every
time the stream becomes available again.

chunkLength False 0 (disabled) If non-zero the record command will start a new
recording file after ChunkLength seconds have
elapsed

waitForIDR False 1 (true) This is used if the recording is being chunked.
When true, new files will only be created on IDR
boundaries

winQtCompat False 0 (false) Mandates 32bit header fields to ensure

compatibility with Windows QuickTime.

An example of the record interface is:

record localStreamName=Videol pathtofile=/recording/path type=mp4 overwrite=1

This records the local stream named Video1 to directory /recording/path in FLV format with overwrite enabled.
The JSON response contains the following details about recording a stream:
¢ data-—The data to parse.

O O O O

keepAlive — If true, the stream will attempt to reconnect if the connection is severed.
localStreamName — The local name for the stream.

overwrite — If true, files with the same name will be overwritten.

pathToFile — Path to the folder where recorded files will be written.

o type —Type of file for recording. Either *flv’,’ts’, or ‘mp4’.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.
A typical response in parsed JSON format is shown here: record

© 2013 EvoStream, Inc. All rights reserved.

Page 26 of 77

transcode

This function changes the compression characteristics of an audio and/or video stream. This function allows you
to change the resolution of a source stream, change the bitrate of a stream, change a VP8 or MPEG2 stream into
H.264 and much more. This function will also allow users to create overlays on the final stream as well as crop
streams.

Transcoding requires SIGNIFICANT computing resources and will severely impact performance. A general
guideline is that you can accomplish one transcoding job per CPU core for HD streams.

IMPORTANT NOTES:

* For any parameter that is pluralized, you may specify one value, or multiple. Multiple values must be
separated by only a comma (comma-delimited). Specifying multiple values indicates multiple new streams
will be created.

* There must be the same number of values for all pluralized parameters. Oder is important: all first values are
grouped together to make the first stream, all second parameters are grouped to make the second stream,
etc...

* Video related parameters are ignored if the parameter videoBitrates is not specified.

* Audio related parameters are ignored if the parameter audioBitrates is not specified.

This function has the following parameters:

Parameter Name Mandatory Default Value Description
source true (null) Can be a URI or a local stream name from EMS.
destinations true (null) The target URI(s) or stream name(s) of the transcoded

stream. If only a name is given, it will be pushed back to
the EMS.

targetStreamNames false transcoded_xx = The name of the stream(s) at destination(s). If not
xx (timestamp) specified, and a full URI is provided to destinations, name
will have a time stamped value.

groupName false transcoded _gr = The group name assigned to this process. If not specified,
OUP_XXXX groupName will have a random value.
(random)

videoBitrates false input video's Target output video bitrate(s) (in bits/s, append 'k' to
bitrate value for kbits/s). Accepts the value 'copy' to copy the

input bitrate. An empty value passed would mean no
video.

© 2013 EvoStream, Inc. All rights reserved. Page 27 of 77

Parameter Name

videoSizes false

videoAdvancedParam false
sProfiles

audioBitrates false

audioChannelsCounts false

audioFrequencies false

audioAdvancedParam false

sProfiles

overlays false
croppings false
keepAlive false

© 2013 EvoStream, Inc. All rights reserved.

Mandatory Default Value

input video's

size

(null)

input audio's
bitrate

input audio's
channel count

input audio's
frequency

(null)

(null)

(null)

1 (true)

Description

Target output video size(s) in wxh (width x height) format.
IE: 240x480

Name of video profile template that will be used. See the
contents of 'evo-avconv-presets' folder for sample file
presets.

Target output audio bitrate(s) (in bits/s, append 'k' to
value for kbits/s). Accepts the value 'copy' to copy the
input bitrate. An empty value passed would mean no
audio.

Target output audio channel(s) count(s). Valid values are 1
(mono), 2 (stereo), and so on. Actual supported channel
count is dependent on the number of input audio
channels.

Target output audio frequency(ies) (in Hz, append 'k' to
value for kHz).

Name of audio profile template that will be used.

Location of the overlay source(s) to be used. These are
transparent images (normally in PNG format) that have
the same or smaller size than the video. Image is placed at
the top-left position of the video.

Target video cropping position(s) and size(s) in 'left : top :
width : height' format (e.g. 0:0:200:100. Positions are
optional (200:100 for a centered cropping of 200 width
and 100 height in pixels). Values are limited to the actual
size of the video.

If keepAlive is set to 1, the server will restart transcoding if
it was previously activated.

Page 28 of 77

An example of the transcode command is:

transcode source=rtmp://<RTMP server>/live/streamname groupName=group
videoBitrates=200k destinations=streaml

The JSON response contains the following details:
* data - The data to parse.

e}

O O 0O OO OO OO OO O O0oOO0o0O OoOO0

o
o

audioAdvancedParamsProfiles - An array of strings specifying the name of profile presets to be
used for audio

audioBitrates - An array of integers for target audio output bitrates

audioChannelsCounts - An array of values for the target number of audio channels

croppings - An array of values for the target cropping positions and size

destinations - An array of target URIs or stream names

dstUriPrefix - Default destination if destination is a stream name

emsTargetStreamName - Target stream name used internally by EMS

fullBinaryPath - Actual location of the transcoder binary

groupName - Name of the group associated with this transcoding process

keepAlive - Transcoding will restart if previously activated

localStreamName - Actual EMS stream name of source (if given)

overlays - An array of locations for the images to be used as overlays

source - The actual stream/file to be used as input for transcoding

srcUriPrefix - Default source if given source is a stream name

targetStreamNames - An array of the target stream names to be used at the destination
videoAdvancedParamsProfiles - An array of strings specifying the name of profile presets to be
used for video

videoBitrates - An array of values for target video output bitrates

videoSizes - An array of values for target video sizes

* description - Describes the result of parsing/executing the command.
* status - 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

© 2013 EvoStream, Inc. All rights reserved. Page 29 of 77

A typical response in parsed JSON format is shown below:
{
"data":{

"audioAdvancedParamsProfiles":["'na"],
"audioBitrates":["'na"],
"audioChannelsCounts":["na"],
"audioFrequencies":["'na"],
"croppings":["'na"],
"destinations":["test"],
"dstUriPrefix":"-f flv tcp:\ /\/localhost:6666\ /",
"emsTargetStreamName":"stream1",
"fullBinaryPath":" c:\\transcoder\\bin\\avconv.exe",
"groupName":"group”,
"keepAlive":true,
"localStreamName":"",
"overlays":["na"],
"source":" rtmp:\/\/<RTMP server>\/live\/streamname ",
"srcUriPrefix":"rtsp:\/\/localhost:5544\ /",
"targetStreamNames":["stream1"],
"videoAdvancedParamsProfiles":["na"],
"videoBitrates":["200k "],

",

"videoSizes":["na"]

}’ rn

"description":"Transcoding successfully started.”,
"status":"SUCCESS"

}

© 2013 EvoStream, Inc. All rights reserved. Page 30 of 77

Transcode Examples
To transcode an RTMP source into different video bitrates and send back to EMS

transcode source=rtmp://<RTMP server>/live/streamname groupName=group
videoBitrates=100k,200k,300k destinations=streaml@0,stream200,stream300

To transcode an existing EMS stream into a different audio channel count and send to an RTMP server

transcode source=streaml groupName=group audioBitrates=copy
audioChannelsCounts=1 destinations=rtmp://<RTMP server 2>
targetStreamNames=streamMono

To use files as input and/or output

transcode source=file://C:\videos\test.mp4 groupName=group videoBitrates=100k
audioBitrates=copy destinations=file://C:\videos\out.mp4

To stop a running transcoding process(es)

removeConfig groupName=group

To force TCP for inbound RTSP

transcode source=rtsp://<RTSP server>/live/streamname groupName=group
videoBitrates=copy videoSizes=360x200 $EMS RTSP_TRANSPORT=tcp

Transcoding Customizations

To configure the transcoder script settings, edit the file config.lua and edit the following entries as needed:

transcoder = {
scriptPath="emsTranscoder",
srcUriPrefix="rtsp://localhost:5544/",
dstUriPrefix="-f flv tcp://localhost:6666/"

}s

To change the location of the actual trancoder binary, edit the file emsTranscoder.sh (linux/unix) and
emsTranscoder.cmd (windows); and change the following line:

TRANSCODER_BIN=/usr/bin/evo-avconv (linux/unix)
set TRANSCODER_BIN=..\evo-avconv.exe (windows)

© 2013 EvoStream, Inc. All rights reserved. Page 31 of 77

listStreamslds

Get a list of IDs for every active stream.

This function has no parameters.

A JSON message will be returned containing the IDs of the active streams:

¢ data - Contains an array of IDs (integers) for the active streams.

* description — Describes the result of parsing/executing the command.

¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: listStreamslds

getStreamlinfo

Returns a detailed set of information about a stream

Parameter Mandatory Default Value Description
Name

id true (null) The uniqueld of the stream. Usually a value returned by
listStreamsIDs

The JSON response contains the following details about a given stream:
¢ data-—The data to parse.
o audio —stats about the audio portion of the stream.
= bytesCount - Total amount of audio data received.
= droppedPacketsCount — The number of lost audio packets.
= packetsCount — Total number of audio packets received.
o bandwidth — The current bandwidth utilization of the stream.
o creationTimestamp — The UNIX timestamp for when the stream was created. UNIX time is expressed
as the number of seconds since the UNIX Epoch (Jan 1, 1970).
o name —the “localStreamName” for this stream.
o outStreamsUniquelDs — For pulled streams. An array of the “out” stream IDs associated with this
“in” stream.
o pullSettings/pushSettings — Not present for streams requested by a 3rd party (IE player/client). A
copy of the parameters used in the pullStream or pushStream command.
= configld — The identifier for the pullPushConfig.xml entry.
= emulateUserAgent — The string that the EMS uses to identify itself with the other server. It
can be modified so that EMS identifies itself as, say, a Flash Media Server.
= forceTcp — Whether TCP MUST be used, or if UDP can be used.
= height — An optional description of the video stream’s pixel height.
= isHds —True if this is an HDS stream.
= isHIs —True if this is an HLS stream.
= jsRecord — True if this stream is actively recording.
= keepAlive — If true, the stream will try to reconnect if the connection is severed.
= |ocalStreamName — Same as the above “name” field.

© 2013 EvoStream, Inc. All rights reserved. Page 32 of 77

= pageUrl - A link to the page that originated the request (often unused).
= rtcpDetectioninterval — Used for RTSP. This is the time period the EMS waits to determine if
an RTCP connection is available for the RTSP/RTP stream. (RTSP is used for synchronization
between audio and video).
= swfUrl —The location of the Flash Client that is generating the stream (if any).
= tcUrl— An RTMP parameter that is essentially a copy of the URI.
= tos— Type of Service network flag.
= ttl - Time To Live network flag.
= uri—The parsed values of the source streams URI.
= width — An optional description of the video stream’s pixel width.
o queryTimestamp — The time (in UNIX seconds) when the information in this request was populated.
o type —The type of stream this is. The first two characters are of most interest:
= char1=1forinbound, O for outbound.
= char 2 = N for network, F for file.
= char 3+ = further details about stream.
= example: INR =Inbound Network Stream (a stream coming from the network into the
EMS).
o uniqueld —The unique ID of the stream (integer).
uptime — The time in seconds that the stream has been alive/running for.
o video — Stats about the video portion of the stream.
= bytesCount - Total amount of video data received.
= droppedBytesCount — The number of video bytes lost.
= droppedPacketsCount — The number of lost video packets.
= packetsCount — Total number of video packets received.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

o

A typical response in parsed JSON format is shown here: getStreamInfo

© 2013 EvoStream, Inc. All rights reserved. Page 33 of 77

listStreams

Provides a detailed description of all active streams.

This interface does not have any parameters.

The JSON response contains the following details about each stream:
data — The data to parse.

e}

o O

O O O O

o
o
o

audio — stats about the audio portion of the stream.
= bytesCount — Total amount of audio data received.
= droppedBytesCount — The number of audio bytes lost.
= droppedPacketsCount — The number of lost audio packets.
= packetsCount — Total number of audio packets received.
bandwidth — The current bandwidth utilization of the stream.
canDropFrames — Outstreams only. Flag set by client allowing for dropped frames/packets.
creationTimestamp — The UNIX timestamp for when the stream was created. UNIX time is expressed
as the number of seconds since the UNIX Epoch (Jan 1, 1970).
edgePid — Internal flag used for clustering.
inStreamUniquelD — For pushed streams. The id of the source stream.
name — the “localstreamname” for this stream.
outStreamsUniquelDs — For pulled streams. An array of the “out” stream IDs associated with this
“in” stream.
pullSettings/pushSettings — Not present for streams requested by a 3" party (IE player/client). A
copy of the parameters used in the pullStream or pushStream command.
= configld — The identifier for the pullPushConfig.xml entry.
= emulateUserAgent — The string that the EMS uses to identify itself with the other server. It
can be modified so that EMS identifies itself as, say, a Flash Media Server.
= forceTcp — Whether TCP MUST be used, or if UDP can be used.
= height — An optional description of the video stream’s pixel height.
= isHds —True if this is an HDS stream.
= isHIs —True if this is an HLS stream.
= jsRecord — True if this stream is actively recording.
= keepAlive — If true, the stream will try to reconnect if the connection is severed.
= |ocalStreamName — Same as the above “name” field.
= pageUrl - A link to the page that originated the request (often unused).
= rtcpDetectioninterval — Used for RTSP. This is the time period the EMS waits to determine if
an RTCP connection is available for the RTSP/RTP stream. (RTSP is used for synchronization
between audio and video).
= swfUrl —The location of the Flash Client that is generating the stream (if any).
= tcUrl— An RTMP parameter that is essentially a copy of the URI.
= tos— Type of Service network flag.
= ttl - Time To Live network flag.
= uri—The parsed values of the source streams URI.
width — An optional description of the video stream’s pixel width.
gueryTimestamp — The time (in UNIX seconds) when the information in this request was populated.
type — The type of stream this is. The first two characters are of most interest:
= char1=1forinbound, O for outbound.
= char 2 = N for network, F for file.
= char 3+ = further details about stream.

© 2013 EvoStream, Inc. All rights reserved. Page 34 of 77

= example: INR =Inbound Network Stream (a stream coming from the network into the

EMS).
o uniqueld —The unique ID of the stream (integer).

o uptime —The time in seconds that the stream has been alive/running for.

o video — Stats about the video portion of the stream.
= bytesCount — Total amount of video data received.

= droppedBytesCount — The number of video bytes lost.
= droppedPacketsCount — The number of lost video packets.
= packetsCount — Total number of video packets received.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: listStreams

getStreamsCount

Returns the number of active streams.
This function has no parameters.

A JSON message will be returned giving the number of active streams:
¢ data-—The data to parse.
O Count —The number of active streams.

* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: getStreamsCount

© 2013 EvoStream, Inc. All rights reserved.

Page 35 of 77

shutdownStream

Terminates a specific stream. When permanently=1 is used, this command is analogous to removeConfig

This function has the following parameters:

Parameter Name Mandatory Default Value Description

id false 0 The uniqueld of the stream that needs to be terminated. The

stream ID’s can be obtained using the listStreams command

“n

localStreamName false (zero The name of the inbound stream which you wish to terminate.
length String) = This will also terminate any outbound streams that are

dependent upon this input stream.

permanently false 1 (true) If true, the corresponding push/pull configuration will also be
terminated. Therefore, the stream will NOT be reconnected
when the server restarts.

An example of the shutdownStream interface is:

shutdownstream id=55 permanently=1

This will shut down the stream with id of 55 and remove its push/pull configuration.

The JSON response contains the following details about the stream being shut down:
¢ data-—The data to parse.
o protocolStackinfo — Contains key/value pairs describing the protocol stack used by the stream.
= carrier — Details about the connection itself.
o farlP —The IP address of the distant party.
farPort — The port used by the distant party.
nearlP — The IP address used by the local computer.
nearPort — The port used by the local computer.
rx — Total bytes received on this connection.
tx — Total bytes transferred on this connection.
o type —The connection type (TCP, UDP) .
= stack[1] — Describes the farthest protocol primitive.
o applicationID —the ID of the internal application using the connection.
o creationTimestamp — The time (in UNIX seconds) when the application started using
the connection.
id — The unique ID for this stack relation.
isEnqueueForDelete — Internal flag used for cleanup.
gueryTimestamp — The time (in UNIX seconds) when this data was populated.
o type — A descriptor for how the application is using the connection.
= stack[2] — Describes the next protocol primitive.
o applicationld — the ID of the internal application using the connection.

O 0O O O O

o O O

© 2013 EvoStream, Inc. All rights reserved. Page 36 of 77

o creationTimestamp — The time (in UNIX seconds) when the application started using
the connection.

O O O O O

id — The unique ID for this stack relation.

isEnqueueForDelete — Scheduled for deletion.

gueryTimestamp — The time (in UNIX seconds) when this data was populated.
rxInvokes — Number of received RTMP function invokes.

streams[1]

audio — Stats about the audio portion of the stream.

o bytesCount — Total amount of audio data received.

o droppedBytesCount — The number of audio bytes lost.

o droppedPacketsCount — The number of lost audio packets.

o packetsCount — Total number of audio packets received.
bandwidth — The current bandwidth utilization of the stream.
canDropFrames — Outstreams only. Flag set by client allowing for dropped
frames/packets.
creationTimestamp — The time (in UNIX secs) when the stream was created.
inStreamUniqueld — For pushed streams. The id of the source stream.
name — the “localstreamname” for this stream.
gueryTimestamp — The time (in UNIX secs) when this data was populated.
type — The type of stream this is. See getStreamlinfo for details.
uniqueld — The unique ID of the stream (integer).
upTime — The time in seconds that the stream has been alive/running for.
video

o bytesCount — Total amount of video data received.

o droppedBytesCount — The number of video bytes lost.

o droppedPacketsCount — The number of lost video packets.

o packetsCount — Total number of video packets received.

o streams[2]

bandwidth — The current bandwidth utilization of the stream.
creationTimestamp — The time (in UNIX secs) when the stream was created.
name — the “localstreamname” for this stream.

outStreamsUniquelDs — For pulled streams. An array of the “out” stream IDs
associated with this “in” stream.

gueryTimestamp — The time (in UNIX secs) when this data was populated.
type — The type of stream this is. See getStreamlInfo for details.

uniqueld — The unique ID of the stream (integer).

uptime — The time in seconds that the stream has been alive/running for.

o txlnvokes — Number of sent RTMP function invokes.
o type — A descriptor for how the application is using the connection.

o streaminfo
bandwidth — The current bandwidth utilization of the stream.

creationTimestamp — The time (in UNIX seconds) when the stream was created.

name — the “localstreamname” for this stream.

outStreamsUniquelds — For pulled streams. An array of the “out” stream IDs associated with
this “in” stream.

gueryTimestamp — The time (in UNIX seconds) when this data was populated.

type — The type of stream this is. See getStreamlInfo for details.

uniqueld — The unique ID of the stream (integer).

© 2013 EvoStream, Inc. All rights reserved.

Page 37 of 77

= upTime — The time in seconds that the stream has been alive/running for.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: shutdownStream

listConfig

Returns a list with all push/pull configurations.

Whenever the pullStream or pushStream interfaces are called, a record containing the details of the pull or push
is created in the pullpushconfig.xml file. Then, the next time the EMS is started, the pullpushconfig.xml file is

read, and the EMS attempts to reconnect all of the previous pulled or pushed streams.

This interface has no parameters.

The JSON response contains the following details about the pull/push configuration:
¢ data - The data to parse.
hds (see fields of createHDSStream command)
his (see fields of createHLSStream command)
mss (see fields of createMSSStream command)
pull (see fields of pullStream command)
push (see fields of pushStream command)
record (see fields of record command)
= status (within the stream types shown above) — array of current and previous states
o current/previous
= code - Aninteger representing the state of the stream.
= description — Describes the state of the stream.
= timestamp — The time (in Unix secs) the state was updated.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

O O O O O O

A typical response in parsed JSON format is shown here: listConfig

© 2013 EvoStream, Inc. All rights reserved. Page 38 of 77

removeConfig

This command will both stop the stream and remove the corresponding configuration entry. This command is

the same as performing: shutdownStream permanently=1

This function has the following parameters:

Parameter Name Mandatory Default Value Description

id true* (null) The configld of the configuration that needs to be removed.
Configld’s can be obtained from the listConfig interface.
Removing an inbound stream will also automatically
remove all associated outbound streams.
*Mandatory only if the groupName parameter is not
specified.

groupName true nu e name of the group that needs to be removed (applicable

N * (null) Th fth h d b d (applicabl
to HLS, HDS and external processes). *Mandatory only if the
id parameter is not specified.

removeHIsHdsFiles false 0 (false) If 1 (true) and the stream is HLS or HDS, the folder associated
with it will be removed.

An example of the removeConfig interface is:

removeConfig id=555

The JSON response contains the following details about the pull/push configuration:
¢ data-—The data to parse.
configld — The identifier for the pullPushConfig.xml entry.
isHds — True if this is an HDS stream.
isHIs — True if this is an HLS stream.
isRecord — True if this is a stream that is being recorded.
o Other fields present are dependent on stream type.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

O O O O

A typical response in parsed JSON format is shown here below:

{

"data":null,
"description":"Configuration terminated",
“status":"SUCCESS"

}

© 2013 EvoStream, Inc. All rights reserved. Page 39 of 77

addStreamAlias

Allows you to create secondary name(s) for internal streams. Once an alias is created the localstreamname

cannot be used to request playback of that stream. Once an alias is used (requested by a client) the alias is
removed. Aliases are designed to be used to protect/hide your source streams.

This function has the following parameters:

Parameter Name Mandatory Default Value Description
localStreamName true (null) The original stream name.

aliasName true (null) The alias alternative to the localStreamName.

An example of the addStreamAlias interface is:

addStreamAlias localStreamName=bunny aliasName=videol

The JSON response contains the following details:
¢ data - The data to parse.
o aliasName — The alias alternative to the localStreamName.
o localStreamName — The original stream name.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: addStreamAlias

listStreamAliases

Returns a complete list of aliases.

This function has no parameters.

The JSON response contains the following details.
¢ data - Contains an array of pairs of aliasName and localStreamName.
o aliasName — The alias alternative to the localStreamName.
o localStreamName — The original stream name.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: listStreamAliases

© 2013 EvoStream, Inc. All rights reserved. Page 40 of 77

removeStreamAlias

Removes an alias of a stream.

This function has the following parameters:

Parameter Name Mandatory Default Value Description

aliasName true (null) The alias to delete

An example of the removeStreamAlias interface is:

removeStreamAlias aliasName=videol

The JSON response contains the following details.
¢ data-—The data to parse.
o aliasName — The alias of the stream that was removed.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: removeStreamAlias

flushStreamAliases

Invalidates all streams aliases.

This function has no parameters.

The JSON response contains the following details.

¢ data — Nothing to parse for this command.

* description — Describes the result of parsing/executing the command.

¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: flushStreamAliases

© 2013 EvoStream, Inc. All rights reserved. Page 41 of 77

createlngestPoint

Creates an RTMP ingest point, which mandates that streams Pushed into the EMS have a target stream name
which matches one Ingest Point privateStreamName.

This function has the following parameters:

Parameter Name Mandatory Default Value Description
privateStreamName true (null) The name that RTMP Target Stream Names must match
publicStreamName True (null) The name that is used to access the stream pushed to the

privateStreamName. The publicStreamName becomes
the streams localStreamName

An example of the createlngestPoint interface is:

createlIngestPoint privateStreamName=thelngestPoint publicStreamName=useMeToViewStream

The JSON response contains the following details.
¢ data-—The data to parse.
o privateStreamName —The privateStreamName which was set.
o publicStreamName — The publicStreamName which was set
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: createlngestPoint

removelngestPoint

Removes an RTMP ingest point

This function has the following parameters:

Parameter Name Mandatory Default Value Description

privateStreamName true (null) The Ingest Point is identified by the privateStreamName,
so only that is required to delete it

An example of the removelngestPoint interface is:

removelIngestPoint privateStreamName=thelngestPoint

© 2013 EvoStream, Inc. All rights reserved. Page 42 of 77

The JSON response contains the following details.
¢ data-—The data to parse.
o privateStreamName —The privateStreamName of the deleted Ingest Point.
o publicStreamName — The publicStreamName of the deleted Ingest Point
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: removelngestPoint

listingestPoints
Lists the currently available Ingest Points

This function has no parameters

An example of the listingestPoints interface is:

listIngestPoints

The JSON response contains the following details.
¢ data-—The data to parse.
o List of pairs:
= privateStreamName —The privateStreamName of the Ingest Point.
= publicStreamName — The publicStreamName of the Ingest Point
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: listingestPoints

© 2013 EvoStream, Inc. All rights reserved. Page 43 of 77

Utility and Feature API Functions

launchProcess

Allows the user to launch an external process on the local machine. This can be used to do transcoding when

paired with applications such as LibAVConv and FFMPEG. This function has the following parameters:

Parameter Name Mandatory Default Description
Value
fullBinaryPath true (null) The path to the executable
keepAlive false 1 (true) If the process dies for any reason, the EMS will restart the

external application when keepAlive is 1.

arguments false Zero-length Complete list of arguments that need to be passed to the
String process, delimited by ESCAPED SPACES (“\ “).

S<ENV>=<VALUE> false Zero-length Any number of environment variables that need to be set just
String before launching the process

An example of the launchProcess interface is:

launchProcess fullBinaryPath=/home/ems/ffmpeg preset.sh arguments=10fps\ Streaml\
Streaml_10fps keepAlive=1 $SAMPLE E VAR=MyVal

This sample command launches a script, named ffmpeg_prest.sh, which presumably contains a shell-script that
will run FFMPEG with a specific set of parameters.

The arguments field passes the three values (“10fps”, “Stream1”, “Stream1_10fps”) to the ffmpeg_preset.sh
script. In this example, these parameters might tell this hypothetical script to transcode Stream1 to be only 10
frames-per-second, and then name the resultant stream “Stream1_10fps”.

The final parameter is an example for setting an environment variable (SAMPLE_E_VAR set to MyVal) on the
command line prior to script/binary execution.

The JSON response contains the following details:

¢ data - The data to parse.

arguments — Complete list of arguments that need to be passed to the process.

fullBinaryPath — Full path to the binary that needs to be launched.

keepAlive — If keepAlive is set to 1, the server will restart the process if it exits.

S<ENV>=<VALUE> — Any number of environment variables that need to be set just before launching
the process.

* description — Describes the result of parsing/executing the command.

¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

O O O O

A typical response in parsed JSON format is shown here: launchProcess

© 2013 EvoStream, Inc. All rights reserved. Page 44 of 77

setTimer

This function adds a timer. When triggered, it will send an event to the event logger.

This function has the following parameter:

Parameter Name Mandatory Default Description
Value
value true (null) The time value for the timer. It can be either the absolute time

at which the trigger will be fired (YYYY-MM-DDTHH:MM:SS or
HH:MM:SS) or period of time between pulses expressed in
seconds between 1 and 86399 (1 sec up to a day).

The JSON response contains the following details:
¢ data-—The data to parse.
o timerld —The ID of the timer added.
o triggerCount — The number of times the timer triggered since it was added.
o value —The time value for the timer (see parameter table above).
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: setTimer

listTimers

This function lists currently active timers.
This function has no parameters.

The JSON response contains the following details:
¢ data-—The data to parse.
o timerld —The ID of the timer added.
o triggerCount — The number of times the timer triggered since it was added.
o value —The time value for the timer (see parameter table above).
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: listTimers

© 2013 EvoStream, Inc. All rights reserved. Page 45 of 77

removeTimer

This function removes a previously armed timer.

This function has the following parameter:

Parameter Name Mandatory Default Description
Value
id true (null) The ID of the timer to be removed.

The JSON response contains the following details:
¢ data-—The data to parse.
o timerld —The ID of the timer added.
o triggerCount — The number of times the timer triggered since it was added.
o value —The time value for the timer (see parameter table for setTimer function).
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: removeTimer

insertPlaylistitem

Inserts a new item into an RTMP playlist. insertPlaylistitem may be called on playlists which are actively being
played by one or more clients/players.

IMPORTANT NOTES:

* This function does NOT modify the actual playlist file. Instead it modifies ONLY the in-memory copy of
the file.

* The sourceOffset and duration parameters behave exactly as they do when creating Playlist Files.
However, they are measured in MILLISECONDS as opposed to seconds.

This function has the following parameters:

Parameter Name Mandatory Default Description

Value
playlistName true (null) The name of the *.Ist file into which the stream will be
inserted
localStreamName true (null) The name of the live stream or file that needs to be inserted.

If a file is specified, the path must be relative to any of the
mediaStorage locations

© 2013 EvoStream, Inc. All rights reserved. Page 46 of 77

Parameter Name Mandatory Default Description
Value

insertPoint false -1000 The absolute time in milliseconds on the playlist timeline
where the insertion will occur. Any negative value will be
considered as “immediate”, meaning it will start playing the
stream being inserted the very next frame

sourceOffset false -2000 Specifies the starting position, in milliseconds, of the source
stream. This parameter can also be used to indicate whether
the stream is live or recorded.

-2000 means that the EMS will look for a live stream with the
localStreamName specified. If a live stream is not found, it
will attempt to play a media file with the localStreamName. If
a media file with that name and path cannot be found the
EMS will wait for a live stream to become available.

-1000 implies that the localStreamName is explicitly a live
stream. If no live stream is found, the EMS waits indefinitely
if duration is set to -1. If duration is another value the EMS
will wait duration seconds before moving to the next item in
the playlist.

0 or a positive number implies that the specified
localStreamName is a media file. The EMS will start playback
sourceOffset milliseconds from the beginning of the file. If no
file is found the playlist item is skipped.

Any negative number other than -1000 or -2000 will be
assumed to be -2000

duration false -1000 The duration of the playback of the stream in milliseconds.

-1000 means that the EMS will play a live stream until it is no
longer available or a media file until its end.

0 means that only a single frame of the stream will be played.

All positive numbers will cause the EMS to play the stream
for duration milliseconds or until the end of the media file or
live stream, whichever comes first.

© 2013 EvoStream, Inc. All rights reserved. Page 47 of 77

Parameter Name Mandatory Default Description

Value

Any negative number passed other than -1000 will be
assumed to be -1000

listStorage

Lists currently available media storage locations.

This function has no parameters.

The JSON response contains the following details:
¢ data-—The data to parse.

e}

o

o
o

clientSideBuffer — How much data should be maintained on the client side when a file is played from
this storage.

description — Description given to this storage. Used to better identify the storage.

enableStats — If true, *.stats files are going to be generated once the media files are used.
externalSeekGenerator — If true, *.seek and *.meta files are going to be generated by another
external tool.

keyframeSeek — If true, the seek/meta files are going to be generated having only keyframe seek
points.

mediaFolder — The path to the media folder.

metaFolder — Path to the folder which is going to contain all the seek/meta files. If missing, the
seek/meta files are going to be generated inside the media folder.

name — Name given to this storage. Used to better identify the storage.

seekGranularity — Sets the granularity for the seek files.

* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: listStorage

© 2013 EvoStream, Inc. All rights reserved. Page 48 of 77

addStorage

Adds a new storage location.

This function has the following parameters:

Parameter Name Mandatory Default Description
Value
mediaFolder true (null) The path to the media folder
description false (null) Description given to this storage. Used to better identify the
storage
clientSideBuffer false (null) How much data should be maintained on the client side when a

file is played from this storage

enableStats false false If true, *.stats files are going to be generated once the media
files are used

externalSeekGenerator false false If true, *.seek and *.meta files are going to be generated by
another external tool

keyframeSeek false false If true, the seek/meta files are going to be generated having
only keyframe seek points

metaFolder false (null) Path to the folder which is going to contain all the seek\/meta
files. If missing, the seek/meta files are going to be generated
inside the media folder

name false (null) Name given to this storage. Used to better identify the storage

seekGranularity false 1.0000 Sets the granularity for the seek files

The JSON response contains the following details:
¢ data - The data to parse.
o clientSideBuffer — How much data should be maintained on the client side when a file is played from
this storage.
o description — Description given to this storage. Used to better identify the storage.
enableStats — If true, *.stats files are going to be generated once the media files are used.
o externalSeekGenerator — If true, *.seek and *.meta files are going to be generated by another
external tool.
o keyframeSeek — If true, the seek/meta files are going to be generated having only keyframe seek
points.
o mediaFolder — The path to the media folder.

o

© 2013 EvoStream, Inc. All rights reserved. Page 49 of 77

o
o

metaFolder — Path to the folder which is going to contain all the seek/meta files. If missing, the
seek/meta files are going to be generated inside the media folder.

name — Name given to this storage. Used to better identify the storage.

seekGranularity — Sets the granularity for the seek files.

* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: addStorage

removeStorage

This function removes a storage location.

This function has the following parameter:

Parameter Name Mandatory Default Value Description

mediaFolder

true (null) The path to the media folder

The JSON response contains the following details:
¢ data-—The data to parse.

e}

o

o
o

clientSideBuffer — How much data should be maintained on the client side when a file is played from
this storage.

description — Description given to this storage. Used to better identify the storage.

enableStats — If true, *.stats files are going to be generated once the media files are used.
externalSeekGenerator — If true, *.seek and *.meta files are going to be generated by another
external tool.

keyframeSeek — If true, the seek/meta files are going to be generated having only keyframe seek
points.

mediaFolder — The path to the media folder.

metaFolder — Path to the folder which is going to contain all the seek/meta files. If missing, the
seek/meta files are going to be generated inside the media folder.

name — Name given to this storage. Used to better identify the storage.

seekGranularity — Sets the granularity for the seek files.

* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: removeStorage

© 2013 EvoStream, Inc. All rights reserved. Page 50 of 77

setAuthentication

Will enable/disable RTMP authentication. This function has the following parameters:

Parameter Mandatory Default Value Description
Name
enabled true (null) 1 to enable, 0 to disable authentication

An example of the setAuthentication interface is:

setAuthentication enabled=1

This enables authentication.

The JSON response contains the following details:
¢ data-—The data to parse.
o enabled - "true’ if authentication is enabled, ‘false” if not.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: setAuthentication

setLogLevel

Change the log level for all log appenders. Default value in the system is set in the config.lua file, which is
usually set to 6.

Parameter Mandatory Default Value Description
Name
level true (null) A value between -1 and 6. -1 means no logging, 0 is only very

critical issues. 1 through 7 adds increasing detail to the logs.

An example of the setLoglevel interface is:

setLoglevel level=5

This sets the log level to 5.

The JSON response contains the following details:

¢ data — Nothing to parse for this command.

* description — Describes the result of parsing/executing the command.

¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: setLogLevel

© 2013 EvoStream, Inc. All rights reserved. Page 51 of 77

version

Returns the versions for framework and this application
This function has no parameters.

The JSON response contains the following details:

¢ data - Contains an integer representing the version.

* description — Describes the result of parsing/executing the command.

¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: version

quit

This function quits the ASCIl Command Line Interface (CLI)
This function has no parameters.

The JSON response contains the following details:

¢ data — Nothing to parse for this command.

* description — Describes the result of parsing/executing the command.

¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: quit

help

This function prints out descriptions of the APl in JSON format.
This function has no parameters.

The JSON response contains the following details:

¢ data-—The data to parse.

command — The name of a valid command.

deprecated —Is “true’ if the command is deprecated, ‘false" if not.

description — Describes the use of the command.

parameters — Parameter settings for the command.
= defaultValue — The default value if the parameter is omitted.
= description — Describes the use of the parameter.
* mandatory — Is “true’ if the parameter is mandatory, ‘false’ if not.
= name — The name of a parameter for the command.

* description — Describes the result of parsing/executing the command.

O O O O

¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: help

© 2013 EvoStream, Inc. All rights reserved.

Page 52 of 77

shutdownServer

This function ends the server process, completely shutting down the EMS. This function must be called twice,

once with a blank parameter, allowing you to obtain the shutdown key, and then a second time with the key,
which actually causes the EMS to terminate.

Parameter Mandatory Default Value Description
Name
Key false (null) The key to shutdown the server. shutdownServer must be

called without the key to obtain the key and once again with
the returned key to shutdown the server

An example of the shutdownServer interface is:

shutdownServer

The JSON response contains the following details:
¢ data-The data to parse
o key—The key that needs to be used in a subsequent call to shutdownServer.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: shutdownServer

© 2013 EvoStream, Inc. All rights reserved. Page 53 of 77

Connections

The Connections API functions allow the user to manipulate and query the actual network connections between
the EMS and other systems or applications. The most common connections will occur between the EMS and a
media player. However, there are a variety of other situations where connections can occur, such as (but not
limited to) connections between two EMS instances, or an EMS and another server.

listConnectionslds

Returns a list containing the IDs of every active connection

This interface has no parameters.

The JSON response contains the following details:

¢ data— An array of connection IDs.

* description — Describes the result of parsing/executing the command.

¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: listConnectionslds

getConnectionInfo

Returns a detailed set of information about a connection

Parameter Mandatory Default Value Description
Name
id true (null) The uniqueld of the connection. Usually a value returned by

listConnectionslds

An example of the getConnectionInfo interface is:

getConnectionInfo id=5

This gets connection info about a connection with id of 5.

The JSON response contains the following details about one connection:

* data —The data to parse. See the listConnections command for a description of the fields.
* description — Describes the result of parsing/executing the command.

¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: getConnectioninfo

© 2013 EvoStream, Inc. All rights reserved. Page 54 of 77

listConnections

Returns details about every active connection

Parameter Mandatory Default Value Description

Name

excludeNonNet false 1 (true) If 1 (true), all non-networking protocols will be excluded. If 0
workProtocols (false), non-networking protocols will be included.

An example of the listConnections interface is:

listConnections excludeNonNetworkProtocols=0

This lists connections including non-networking protocols.

The JSON response contains the following details about each connection:
¢ data-—The data to parse.
o carrier — Details about the connection itself.
= farlP —The IP address of the distant party.
= farPort — The port used by the distant party.
= nearlP —The IP address used by the local computer.
= nearPort—The port used by the local computer.
= rx—Total bytes received on this connection.
= tx— Total bytes transferred on this connection.
= type — The connection type (TCP, UDP) .
o pushSettings/pullSettings/hlsSettings/hdsSettings/recordSettings — A copy of the parameters used in
the stream command that caused this connection to be made.
= configld — The identifier for the pullPushConfig.xml entry.
= isHds —True if this is an HDS stream.
= isHIs —True if this is an HLS stream.
= jsRecord — True if this is a stream that is being recorded.
= Other fields present depend on the stream type (see pushStream, pullStream,
createHLSStream, createHDSStream, createMSSStream, record commands).
o stack — details about what internal resources are using the connection..
= applicationID — the ID of the internal application using the connection.
= creationTimestamp — The time (in UNIX seconds) when the application started using the
connection.
= id—The unique ID for this stack relation.
= isEnqueueForDelete — Internal flag used for cleanup.
= queryTimestamp — The time (in UNIX seconds) when this data was populated.
= rxlnvokes — Number of received RTMP function invokes.
= streams — Details about the streams that are using the connection (see fields in ListStreams).
= txlnvokes — Number of sent RTMP function invokes.
= type — A descriptor for how the application is using the connection.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.
A typical response in parsed JSON format is shown here: listConnections

© 2013 EvoStream, Inc. All rights reserved. Page 55 of 77

getExtendedConnectionCounters

Returns a detailed description of the network descriptors counters. This includes historical high-water-marks for

different connection types and cumulative totals.
This interface has no parameters.

The JSON response contains the following details:
¢ data-—The data to parse.
o origin
= grandTotal — Stats for all connections.
= managedNonTcpUdp — Stats for non-TCP/UDP connections.
®= managedTcp — Stats for TCP connections.
= managedTcpAcceptors — Stats for TCP acceptors.
= managedTcpConnectors — Stats for TCP connectors.
= managedUdp — Stats for UDP connections.
= rawUdp — Stats for raw UDP.
o Total —Summary.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: getExtendedConnectionCounters

resetMaxFdCounters

Reset the maximum, or high-water-mark, from the Connection Counters

This interface has no parameters

The JSON response contains the following details:

¢ data — Nothing to parse for this command.

* description — Describes the result of parsing/executing the command.

¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: resetMaxFdCounters

resetTotalFdCounters

Reset the cumulative totals from the Connection Counters

This interface has no parameters

The JSON response contains the following details:

¢ data — Nothing to parse for this command.

* description — Describes the result of parsing/executing the command.

¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: resetTotalFdCounters

© 2013 EvoStream, Inc. All rights reserved. Page 56 of 77

getConnectionsCount

Returns the number of active connections

This interface has no parameters

The JSON response contains the following details:
¢ data-—The data to parse.
o count —The number of active connections.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: getConnectionsCount

getConnectionsCountLimit

Returns the limit of concurrent connections. This is the maximum number of connections an EMS instance will

allow at one time.
This interface has no parameters.

The JSON response contains the following details:
¢ data-—The data to parse.
o current —The current number of concurrent connections.
o limit —The maximum number of concurrent connections.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: getConnectionsCountLimit

setConnectionsCountLimit

This interface sets a limit on the number of concurrent connections the EMS will allow.

This function has the following parameters:

Parameter Name Mandatory Default Value Description

count true (null) The maximum number of connections allowed on this
instance at one time. CLI connections are not affected.

An example of the setConnectionsCountLimit interface is:

setConnectionsCountLimit count=500

This sets the connection limit to 500.

© 2013 EvoStream, Inc. All rights reserved. Page 57 of 77

The JSON response contains the following details:
¢ data - The data to be parsed.
o current —The current bandwidths.
= in—The inbound bandwidth.
= out—The outbound bandwidth.
o max—The maximum bandwidths.
®= in—Theinbound limit.
= out—The outbound limit.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: setConnectionsCountLimit

getBandwidth

Returns bandwidth information: current values and limits.

This function has no parameters.

The JSON response contains the following details:
¢ data - The data to be parsed.
o current —The current bandwidths.
®= in—The inbound bandwidth.
= out—The outbound bandwidth.
o max—The maximum bandwidths.
®= in—Theinbound limit.
= out—The outbound limit.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: getBandwidth

© 2013 EvoStream, Inc. All rights reserved. Page 58 of 77

SetBandwidthLimit

Enforces a limit on input and output bandwidth.

This function has the following parameters:

Parameter Mandatory Default Value Description
Name
in true (null) Maximum input bandwidth. 0 means disabled. CLI connections

are not affected.

out true (null) Maximum output bandwidth. 0 means disabled. CLI

connections are not affected.

An example of the setBandwidthLimit interface is:
setBandwidthLimit in=400000 out=300000

This sets the inbound bandwidth limit to 400,000, and the outbound bandwidth limit to 300,000 bytes/sec.

The JSON response contains the following details:
¢ data - Provides the following information for current values and maximum values:
o in =The inbound bandwidth current value / maximum value.
o out=The outbound bandwidth current value / maximum value.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: setBandwidthLimit

© 2013 EvoStream, Inc. All rights reserved. Page 59 of 77

Services

The services API functions allow the user to manipulate the Networking Services that are added to an EMS

application. These services are also called acceptors.

listServices

Returns the list of available services.

This interface has no parameters.

The JSON response contains the following details:
* data - Provides the following information for each protocol:

O 0 O O O O o0 o0 O o O O

e}

acceptedConnectionsCount — The number of active connections using the service.
appld — The ID of the application linked to the service.

appName — The name of the application linked to the service.
droppedConnectionsCount — The number of dropped connections.

enabled - “true’ if the service is enabled, “false" if not.

id = ID of the service.

ip = The IP address bound to the service.

port — The port bound to the service.

protocol — The protocol bound to the service.

sslCert — The SSL certificate.

sslKey — The SSL certificate key.

useLengthPadding — “true’ if padding is enabled, ‘false’ if not (for some protocols only).

waitForMetadata — ‘true’ if metadata is required, “false’ if not (for some protocols only).

* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: listServices

© 2013 EvoStream, Inc. All rights reserved.

Page 60 of 77

createService

Creates a new service.

This function has the following parameters:

Parameter Name Mandatory Default Value Description

ip

port
protocol
sslCert

sslKey

true (null) The IP address to bind on.

true (null) The port to bind on.

true (null) The protocol stack name to bind on.
false (null) The SSL certificate to be used.

false (null) The SSL certificate key to be used.

An example of the setConnectionsLimit interface is:

createService ip=0.0.0.0 port=9556 protocol=inboundRtmp

This creates an acceptor for every hosted IP to accept inbound RTMP requests on port 9556.

The JSON response contains the following details:
¢ data-—The data to parse.

O 0 O O O O 0 O

e}

acceptedConnectionsCount — The number of active connections using the service.

appld — The ID of the application using the service.

appName — The name of the application using the service.
droppedConnectionsCount — The number of dropped connections.
enabled - “true’ if the service is enabled, “false" if not.

id = ID of the service.

ip = The IP address bound to the service.

port — The port bound to the service.

protocol — The protocol bound to the service.

* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: createService

© 2013 EvoStream, Inc. All rights reserved.

Page 61 of 77

enableService

Enable or disable a service.

This function has the following parameters:

Parameter Name Mandatory Default Value Description
id true (null) The id of the service.
enable true (null) 1 to enable, 0 to disable service.

An example of the enableService interface is:

enableService id=5 enable=0

This disables the service with an id of 5.

The JSON response contains the following details:
¢ data-—The data to parse.

* description — Describes the result of parsing/executing the command.

¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

A typical response in parsed JSON format is shown here: enableService

shutdownService

Terminates a service

This function has the following parameters:

Parameter Mandatory Default Value Description
Name
id true (null) The id of the service

An example of the shutdownService interface is:

shutdownService id=5

This shuts down the service with an id of 5.

© 2013 EvoStream, Inc. All rights reserved.

Page 62 of 77

The JSON response contains the following details:
¢ data-—The data to parse.
acceptedConnectionsCount — Number of active connections.
appld — ID of application using the service.
appName — Application using the service.
droppedConnectionsCount — Number of dropped connections.
enabled - “true’ if the service is enabled, “false" if not.
id — ID of the service.
ip — IP address used by the service.
port — Port used by the service.
protocol — Protocol used by the service.
sslCert — SSL certificate.
o sslKey — SSL certificate key.
* description — Describes the result of parsing/executing the command.
¢ status — 'SUCCESS' if the command was parsed and executed successfully, "FAIL" if not.

O 0O O O O O 0O O O O

A typical response in parsed JSON format is shown here: shutdownService

© 2013 EvoStream, Inc. All rights reserved. Page 63 of 77

EMS Event Notification System

The Events created by the EMS are as follows:

Stream Events

inStreamCreated A new inbound stream has been created
outStreamCreated A new outbound stream has been created
streamCreated A new neutral (neither in nor out) stream has been created

inStreamClosed

An inbound stream has been closed

outStreamClosed

An outbound stream has been closed

streamClosed

A neutral stream has been closed

inStreamCodecsUpdated The audio and/or video codecs for this inbound stream have been identified or
changed

outStreamCodecsUpdated The audio and/or video codecs for this outbound stream have been identified
or changed

streamCodecsUpdated

The audio and/or video codecs for this neutral stream have been identified or
changed

Adaptive Streaming/File-based Streaming Events

hisChildPlaylistUpdated

Stream specific HLS playlist has been modified

hlsMasterPlaylistUpdated

HLS group playlist has been modified

hlsChunkCreated

A new HLS segment was opened on disk

hlsChunkClosed

A new HLS segment has been completed and is ready on disk

hlsChunkError

A failure occurred when writing to an HLS segment file

hdsChildPlaylistUpdated

Stream specific HDS manifest has been modified

hdsMasterPlaylistUpdated

HDS group manifest has been modified

hdsChunkCreated A new HDS segment file has been opened

hdsChunkClosed A new HDS segment has been completed and is ready on disk
hdsChunkError A failure occurred when writing to an HDS segment/fragment file
mssChunkCreated A new MSS fragment file has been opened

mssChunkClosed A new MSS fragment has been completed and is ready on disk
mssChunkError A failure occurred when writing to an MSS fragment file

mssPlaylistUpdated

MSS manifest has been modified

APl Based Events

cliRequest The EMS has received a Runtime APl command

cliResponse The response generated by the EMS for the last Runtime APl command
processStarted A process has been started at the request of the launchProcess APl command
processStopped A process started via the launchProcess APl command has been stopped

timerCreated

A new timer has been created via the setTimer APl command

timerTriggered

The requested timer event

timerClosed

Indicates the timer is no longer valid and will not create any futher
timerTriggered events

Connection Based Events

protocolRegisteredToApp

A connection has been fully established

protocolUnregisteredFromApp

A connection has been disconnected

© 2013 EvoStream, Inc. All rights reserved.

Page 64 of 77

carrierCreated

Some 10 handler, such as a TCP socket, has been created. This is not
analogous to a connection creation.

carrierClosed

Some |0 handler, such as a UDP socket, has been closed. This is not analogous
to a connection being closed.

Application Based Events

applicationStart The internal EMS application has started

applicationStop

The internal EMS application has stopped, likely indicating a shutdown is
about to occur

serverStarted

The EMS has fully started

serverStopping

The EMS is about to shutdown. This is sent as late as possible, but clearly not
after shutdown has been completed

The data definitions for each event can be found below. The specific schema for each event will depend up on
the serializerType chosen for your Event Notification Sink (defined earlier in this document).

Stream Event Definitions

inStreamcCreated, outStreamCreated, streamCreated

A new inbound, outbound or neutral stream has been created.

O 0 O O O O O o0 O O O o0 o

O 0O O O O O O

appName — Name of the application using the stream.

audio — Statistics about the audio stream.

bandwidth — Bandwidth of the stream.

connectionType — Connection type used by stream.

creationTimestamp — Epoch time stamp when the stream was created (msec since 1/1/70).
ip — IP address used by the stream.

nearlP — The address of the host computer

farlP — The IP of the stream source

name — Name assigned to the stream.

port — Port used by the stream.

nearPort — The port used by the host computer

farPort — the port used by the stream source

pullSettings — Pullstream settings. Only present for inbound streams that are pulled via the
pullStream APl command

queryTimestamp — Epoch time stamp when the stream was queried (msec since 1/1/70).
record — Record settings for the stream.

type — Protocol type (see Table of Protocol Types).

typeNumeric — Protocol type in decimal.

uniqueld — Stream ID.

upTime — Stream duration in milliseconds.

video — Statistics about the video stream.

Example:

appName: evostreamms
audio:
bytesCount: 0

© 2013 EvoStream, Inc. All rights reserved. Page 65 of 77

codec: AUNK
codecNumeric: 4707755069515235328
droppedBytesCount: 0
droppedPacketsCount: 0
packetsCount: 0
bandwidth: 0
connectionType: 1
creationTimestamp: 1361182998409.229
ip: 192.168.1.130
name: test
port: 49730
pullSettings:
audioCodecBytes:
configld: 1
emulateUserAgent: EvoStream Media Server (www.evostream.com) player
forceTcp: false
isAudio: true
keepAlive: true
localStreamName: test
operationType: 1
pageUrl:
ppsBytes:
rtcpDetectionInterval: 10
spsBytes:
ssmlp:
swfUrl:
tcUrl:
tos: 256
ttl: 256
uri: rtmp://cp76072.1live.edgefcs.net/live/MED-HQ-Flash@42814
queryTimestamp: 1361182998424.829
type: INR
typeNumeric: 5282249572905648128
uniqueld: 2
upTime: 15.600
video:
bytesCount: 0
codec: VUNK
codecNumeric: 6220964544311721984
droppedBytesCount: 0
droppedPacketsCount: 0
packetsCount: 0

© 2013 EvoStream, Inc. All rights reserved. Page 66 of 77

inStreamClosed, outStreamClosed, streamClosed

An inbound, outbound or neutral stream has been closed.

O 0 O o O O 0O 0O 0O O O O OO OO OO OO OO OO Oo

Example:

appName: evostreamms

audio:

bytesCount: 190351
codec: AAAC

codecNumeric: 4702111241970122752

droppedBytesCount: 0
droppedPacketsCount: 0
packetsCount: 681

bandwidth: 548
connectionType: 1

creationTimestamp:

ip: 192.168.2.88

name: test
outStreamsUniquelds:
0: 3
port: 49730
pullSettings:
audioCodecBytes:

configld: 1

appName — Name of the application using the stream.

audio — Statistics about the audio stream.

bandwidth — Bandwidth of the stream.

connectionType — Connection type used by stream.

creationTimestamp — Epoch time stamp when the stream was created (msec since 1/1/70).
ip — IP address used by the stream.

nearlP — The address used by the host computer

farlP — the adress used by the stream source

name — Name assignhed to the stream.
port — Port used by the stream.
nearPort — The port used by the host computer

farPort — the port used by the stream source

queryTimestamp — Epoch time stamp when the stream was queried (msec since 1/1/70).
record — Record settings for the stream.

type — Protocol type (see Table of Protocol Types below).

typeNumeric — Protocol type in decimal.

uniqueld — Stream ID.
upTime — Stream duration in milliseconds.
video — Statistics about the video stream.

1361182998409.229

emulateUserAgent: EvoStream Media Server (www.evostream.com) player

forceTcp: false
isAudio: true
keepAlive: true
localStreamName: test
operationType: 1
pageUrl:

ppsBytes:
rtcpDetectionInterval:
spsBytes:

ssmlp:

swfUrl:

© 2013 EvoStream, Inc. All rights reserved.

10

Page 67 of 77

tcUrl:
tos: 256
ttl: 256
uri: rtmp://cp76072.1live.edgefcs.net/live/MED-HQ-Flash@42814
queryTimestamp: 1361183030139.685
type: INR
typeNumeric: 5282249572905648128
uniqueld: 2
upTime: 31730.456
video:
bytesCount: 2346717
codec: VH264
codecNumeric: 6217274493967007744
droppedBytesCount: 0
droppedPacketsCount: 0
packetsCount: 1147

© 2013 EvoStream, Inc. All rights reserved. Page 68 of 77

inStreamCodecsUpdated, outStreamCodecsUpdated, streamCodecsUpdated

A new inbound, outbound or neutral stream has been identified with a specific codec.

appName — Name of the application using the stream.
audio — Statistics about the audio stream.

bandwidth — Bandwidth of the stream.
connectionType — Connection type used by stream.

creationTimestamp — Epoch time stamp when the stream was created (msec since 1/1/70).

o
o
o
o
o
o ip—IP address used by the stream.

o nearlP —The address used by the host computer
o farlP —the address used by the stream source

o name — Name assigned to the stream.

o port —Port used by the stream.

o nearPort —The port used by the host computer
o farPort —the port used by the stream source

o

pullSettings — Pullstream settings. Only present for inbound streams that are pulled via the

pullStream APl command

o
o record — Record settings for the stream.
o type — Protocol type (see Table of Protocol Types below).
o typeNumeric — Protocol type in decimal.
o uniqueld — Stream ID.
o upTime — Stream duration in milliseconds.
o video — Statistics about the video stream.
Example:
appName: evostreamms
audio:

bytesCount: 0
codec: AUNK
codecNumeric: 4707755069515235328
droppedBytesCount: 0
droppedPacketsCount: 0
packetsCount: 0
bandwidth: 548
connectionType: 1
creationTimestamp: 1361182998409.229
ip: 192.168.2.88
name: test
port: 49730
pullSettings:
audioCodecBytes:
configld: 1

queryTimestamp — Epoch time stamp when the stream was queried (msec since 1/1/70).

emulateUserAgent: EvoStream Media Server (www.evostream.com) player

forceTcp: false
isAudio: true
keepAlive: true
localStreamName: test
operationType: 1
pageUrl:

ppsBytes:
rtcpDetectionInterval: 10
spsBytes:

ssmlp:

swfUrl:

© 2013 EvoStream, Inc. All rights reserved.

Page 69 of 77

tcUrl:
tos: 256
ttl: 256
uri: rtmp://cp76072.1live.edgefcs.net/live/MED-HQ-Flash@42814
queryTimestamp: 1361182998456.029
type: INR
typeNumeric: 5282249572905648128
uniqueld: 2
upTime: 46.800
video:
bytesCount: 56
codec: VH264
codecNumeric: 6217274493967007744
droppedBytesCount: 0
droppedPacketsCount: 0
packetsCount: 1

© 2013 EvoStream, Inc. All rights reserved. Page 70 of 77

Adaptive Streaming/File-based Streaming Events

hlsChunkCreated, hdsChunkCreated, mssChunkCreated
Event triggered when an HLS/HDS/MSS chunk file was opened on disk.

o file— Name of the HLS/HDS/MSS chunk file that was opened.

Example 1:
file: \var\www\hls\streaml\
segment_1362025844863_1362025844863_14.ts
Example 2:
file: \var\www\hds\streaml\f4vSegl-Fragl
Example 3:
file: \var\www\mss\streaml\video\524288\11250

hlsChunkClosed, hdsChunkClosed, mssChunkClosed
Event triggered when an HLS/HDS/MSS chunk file was closed on disk.

o file— Name of the HLS/HDS/MSS chunk file that was closed.

Example 1:
file: \var\www\hls\streaml)\
segment_1362025844863_1362025844863_14.ts

Example 2:

file: \var\www\hds\streaml\f4vSegl-Fragl
Example 3:

file: \var\www\mss\streaml\video\524288\11250

hlsChunkError, hdsChunkError, mssChunkError

Event triggered when an error occurs while writing an HLS/HDS/MSS chunk file.

o error — Description of the error encountered.

Example:
error: Could not write video sample to \var\www\hls\streaml\
segment_1362025844863_1362025844863_14.ts

hlsChildPlaylistUpdated, hdsChildPlaylistUpdated

Event triggered when an HLS or HDS stream specific playlist file was modified

o file— Name of the HLS or HDS playlist that was updated

Example 1:

file: \var\www\hls\streaml\playlist.m3u8
Example 2:

file: \var\www\hds\streaml\streaml.f4m

© 2013 EvoStream, Inc. All rights reserved. Page 71 of 77

hlsMasterPlaylistUpdated, hdsMasterPlaylistUpdated
Event triggered when an HLS or HDS group playlist file was modified

o file— Name of the HLS or HDS playlist that was updated

Example 1:
file: \var\www\hls\playlist.m3u8

Example 2:
file: \var\www\hds\manifest.f4m

mssPlaylistUpdated

Event triggered when an MSS stream specific playlist file was modified

o file— Name of the MSS playlist that was updated

Example:
file: \var\www\mss\streaml\manifest

API Based Events

cliRequest

The EMS has received a Runtime APl command.

o command — The CLI command received by the EMS.
o parameters — Optional parameters for the CLI command.

Example:
command: launchProcess
parameters:
fullBinaryPath: d:\demoplay.bat

cliResponse
The response generated by the EMS for the last Runtime APl command.

o data— Optional data for the CLI response.
o description — A description of the CLI response.
o status — SUCCESS or FAIL. The result of parsing (not necessarily executing) the CLI command.

Example:
data:
arguments:
configld: 1
fullBinaryPath: d:\demoplay.bat
keepAlive: true
operationType: 6
description: Process enqueued for start
status: SUCCESS

© 2013 EvoStream, Inc. All rights reserved. Page 72 of 77

processStarted, processStopped

A process has been started/stopped at the request of the launchProcess APl command

o arguments — Arguments for the process just started.
o configld — The configuration ID for the process just started.
o fullBinaryPath — Full path to the binary of the process just started.
o keepAlive — If true, reconnection is attempted every second when the connection is severed.
o operationType — 0:STANDARD, 1:PUSH, 2:PULL, 3:HLS, 4:HDS, 5:RECORD, or 6:LAUNCHPROCESS.
Example:
arguments:
configld: 1
fullBinaryPath: d:\demoplay.bat
keepAlive: true
operationType: 6
timerCreated

A new timer has been created via the setTimer APl command

o timerld — The ID of the timer created.

o triggerCount — The number of times the timer triggered since it was created.

o value — The time value for the timer.

Example:
timerId: 9
triggerCount: 0
value: 100
timerTriggered

A timer has triggered.

o timerld — The ID of the timer that triggered.
o triggerCount — The number of times the timer triggered since it was created.
o value — The time value for the timer.
Example:
timerId: 9
triggerCount: 0
value: 100
timerClosed

A timer has been closed and will not create any new timerTriggered events.

o timerld — The ID of the timer closed.
o triggerCount — The number of times the timer triggered since it was created.
o value — The time value for the timer.

Example:

timerId: 9
triggerCount: 2

value: 100

© 2013 EvoStream, Inc. All rights reserved. Page 73 of 77

Connection Based Events

protocolRegisteredToApp

A connection has been fully established.

o customParameters — Custom parameters for the protocol.

o protocolType — Protocol type (see Table of Protocol Types below).

Example:

customParameters:
ip: 127.0.0.1
port: 1112
protocol: inboundJsonCli
sslCert:
sslKey:
useLengthPadding: true

protocolType: IJSONCLI

protocolUnregisteredFromApp

A connection has been disconnected.

o customParameters — Custom parameters for the protocol.
o protocolType — Protocol type (see Table of Protocol Types below).

Example:

customParameters:
ip: 127.0.0.1
port: 1112
protocol: inboundJsonCli
sslCert:
sslKey:
useLengthPadding: true

protocolType: IJSONCLI

carrierCreated

Some 10 handler, such as a TCP socket, has been created.

carrierClosed

Some 10 handler, such as a UDP socket, has been closed.

© 2013 EvoStream, Inc. All rights reserved.

Page 74 of 77

Application Based Events

applicationStart, applicationStop

These events are created right after the internal EMS application has started and when that application has

stopped, likely indicating server shutdown.

o config — Configuration of the application that just started (see EMS User's Guide for details).
o id—ID of the application that just started.
o name — Name of the application that just started.

Example:
config:
acceptors:
0:
ip: 127.0.0.1
port: 1112
protocol: inboundJsonCli
sslCert:
sslKey:
useLengthPadding: true

ip: 0.0.0.0

port: 7777

protocol: inboundHttpJsonCli
sslCert:

sslKey:

ip: 0.0.0.0

port: 1935

protocol: inboundRtmp
sslCert:

sslKey:

clustering: true

ip: 127.0.0.1

port: 1936

protocol: inboundRtmp
sslCert:

sslKey:

clustering: true

ip: 127.0.0.1

port: 1113

protocol: inboundBinVariant
sslCert:

sslKey:

ip: 0.0.0.0

port: 5544

protocol: inboundRtsp
sslCert:

sslKey:

ip: 0.0.0.0

port: 6666

protocol: inboundLiveFlv
sslCert:

sslKey:

waitForMetadata: true

© 2013 EvoStream, Inc. All rights reserved. Page 75 of 77

id: 1
name:

serverStarted

The server has started.

serverStopped

aliases:

0: er

1: live

2: vod
appDir: C:\emsdemo\config\
authPersistenceFile: ..\config\auth.xml
bandwidthLimitPersistenceFile: ..\config\bandwidthlimits.xml
connectionsLimitPersistenceFile: ..\config\connlimits.xml

default: true
description: EVOSTREAM MEDIA SERVER

eventLogger:
sinks:
1:
filename: ..\logs\events.txt
format: text
type: file

hasStreamAliases: false
initApplicationFunction: GetApplication_evostreamms
initFactoryFunction: GetFactory evostreamms
library:
maxRtmpOutBuffer: 524288
mediaStorage:
1:

description: Default media storage

mediaFolder: ../media
metaFileGenerator: false
name: evostreamms
protocol: dynamiclinklibrary

pushPullPersistenceFile: ..\config\pushPullSetup.xml

rtcpDetectionInterval: 15
streamsExpireTimer: 10
validateHandshake: false

evostreamms

The server is just about to stop.

© 2013 EvoStream, Inc. All rights reserved.

Page 76 of 77

Event Table of Protocol Types

Protocol Group TAG Protocol Type
Carrier Protocols TCP TCP
UDP UDP
Variant Protocols BVAR Bin Variant
XVAR XML Variant
JVAR JSON Variant
RTMP Protocols IR Inbound RTMP
IRS Inbound RTMPS
OR Outbound RTMP
RS RTMP Dissector
Encryption Protocols RE RTMPE
ISSL Inbound SSL
OSSL Outbound SSL
MPEG-TS Protocol ITS Inbound TS
HTTP Protocols IHTT Inbound HTTP
IHTT2 Inbound HTTP2
IH4R Inbound HTTP for RTMP
OHTT Outbound HTTP
OHTT2 Outbound HTTP2
OH4R Outbound HTTP for RTMP
CLI Protocols IJSONCLI | Inbound JSON CLI
H4C HTTP for CLI
RPC Protocols IRPC Inbound RPC
ORPC Outbound RPC
Passthrough Protocol PT Passthrough

© 2013 EvoStream, Inc. All rights reserved. Page 77 of 77

