4p~Evostream

EvoStream Media Server
User’s Guide

Table of Contents

ABOUT THIS DOCUIMENT ...ccuuuuuuniiiiirnnsiinnneemssssssssssssssssssssssssmeessns 6
T ENT Leteetteeeetttee e ettt e s utteeeeabeeeesasteeesubaeeesasbeeeeaasteeesanbeeeesasteeeeaseeeesaaeeeeeaateeeeeanbaeeeeasbaeeeaabeeeeenbbeeeenbaeeeaabaeee e nbaeeeeataeeeanbaeeenn 6
AVUDIENCE 11t tuttteeeettteeeeutteeesuteeessasteeesutteaesasteeesaaseeeesasetaeesabaaeeaasbaeesaaseeeeeaabaeeeaassaee s e beeeeaasbeeeeaaseaeeeasbeeeenabbe e e e anaeeeenbbeeeeanareeennrees 6
DOCUMENT DEFINITIONS 1. uvteeeeuetteessseeeesausteeesuseeesasseessausseessssseessssseessnsssessssseessnssssessassseessssesessssseessssssesssssseesssssseessssseessnseeees 7

ABOUT THE EVOSTREAM MEDIA SERVER (EIMIS) ..ccetiiiiiiiiiiiicciessssnnnnenneeeeesseessssssssssssssssssssnsssssssssssssssssssssssssssnsnnssssssssssssssssns 8
W HAT IS EIMIS? ittt ettt ettt ettt e e sttt e ettt e sttt e e e e abte e e s sbaeeeaabeeee e abaeeeaassaeesnbaeeeaasbeeesaaseaeesasbeeeanasbeeesasaeessnsbeeesnnsaeeesanses 8
WWHY USE THE EIVIS? ..ttt ettt ettt ettt e ettt e sttt e e e sttt e e s ate e e e s bt e e e e abaeesaaseaee e aabeeeeaasbeeesaaseaeesasbeeeenasbeeesanaaessasbeeesnnseeessanses 8
KEY FEATURES AND BENEFITS OF THE EMS

[1o Lol 3 Lo =14 1oy OSSR
EXEEIISIDIC ..ottt ettt ettt e ettt e et e+ ettt e e ettt e e ettt e e et e e e a bt e e e e ata e e e ettt e e e tbeeeaaabteeeaataeeeantbeeeaaes 9
(T =T BTSSR UUUPPOt 9
(0 XX o [o 15 0] 4 1 U UO TSP PUUPN 9
Y ole] o] o] L= TUPRIPN 9
L= (o] o] [P RSR RPNt 9
HOW DOES IT WORK? ...ttt eetteeeeitteeseutteeesautteeesuteeesausteeessstaessnssaeesaasseessnsaeesansseeesnssaeeesassaaessabeeeesssaeesassaeesaasaeeesnnteeesassaeesnnsenennn 9
SEIOAIM ROULING.c.cvvveieieiiiiieieiaiaii et e s e e e s e e e s e e e e e e s e s s s e s asasasasasasasasasasasasasasasaaasaeasaesaaaaeeasaeaeseaesesesesssasesees

Stream Transformation

WVHERE WILL IT RUNT 1etttuttteeeutteeeauteeesauueeeesuseeesssseessausaeesssssaesssnsseessnssseessnsssesssssssessnsssesssssenessnssseesssseeesnnsesessnssseesnseeessnsseeesnns 10
VWHAT CAN BE CONNECTED TO IT 2 et tutttteeutteeesureeessuteeesausaeeesstsaeessssaeessssseessssssessnssseessnsssesssssesessnssssesssssessnsseeessnssseesnsseeessnsseessnne 10
INSTALLATION AND STARTUPuiiiiiiiiiiitiitiiiiiiiieiiniiisaiiistitaasiiisttsassiistessassesstesssssisstsasssisstesssssissessssssssesssssssssesssssssssssnns 11
OBTAIN A LICENSE ..tttttttttttttttutererutetetaietetatetesas e e s e s e s e s e s e s e s e e e eeeeeeaeaaaaaaesasesasesesaeeseasesesasesererererererereeenereeenees 11
LINUX INSTALLER ... teteteteieeeieee et eeeee e ettt ettt ettt ettt et et ettt ettt ettt e et e e e et et et et et s b sttt s s e e e e e e e e s e e e e e e e e e eeeaeaeans 11
DOWNLOAD AND EXTRACT «.iiiiiiiiiitiieieteieietet ettt ettt ettt ettt ettt e bbb ebeeebeb et e e bbb bbb e s e s e e e e e e e e e e e e e eeaeaaasns 13
PLATFORM VERIFICATION ..tttttteeeteeetetetetetetetetetettteteettae e eaeaes e eea s et e eas e b s s st e b st sb bbb e e s e e e e e e e e e e e e e e eeeeaaasns 13
LINUX LIMITATIONS ettt e eeeeeeeeeeeeeee ettt e eete et tetetetetete ettt e et e e et ae et e e e e et e b et et s b sttt s s e e e s e e e e e s e e e e e e e eeeeeaeans 13
DISTRIBUTION CONTENTS ..eettttetetttetetetetereretereteeeeeteeaeaeseseasssssasssssssasssassbsbesabebebesassss s s e e e s s e s e s e s e e e eeeeseseaaanns

[1 @ [K3 (o 1 =T TR UT P
Linux Archive Distribution
WINAOWS ZIP INSEQI ..ottt ettt ettt e e ettt e et e e ettt e e s st e e e s att e e e aatbeaesasbeassaateaeannbseasssstaasaasseaeans
Fil@ D@SCIIPTIONS ...t e et e e e et ettt e e e e e e et e e e e e e e s atassaaaaaeeaeaststsasaaaaeeasastsssesaaaasaaassssssnaaaseeasasssssanasens
STARTING THE SERVER 1..uuvteuteesuteesutesaseeesesessseessseesssesssseesssessnsesansesssssssssssssssessssessnsessnsesansssensssesssessssessssessssesansessnsesensesessssesasesns
Linux, BSD and Mac OSX Distributions
LinUX INSEAIEE DISEIIDULIONSoeeeeeieeeeiiee ettt ettt ettt e ettt e e e sttt e e et e e e ettt e e s aatte e e s astaaeaattaaesnataesssssnaessnssaaanns

WINAOWS DISEIIDULIONS .vvvvvvvvveeeeieeeiieieieii s e e s e e s e s e aaaesasasaaesesaseseseseseseseeesasesasesasesesasesssesssseeeees

STAPEUPD SUCCESS.c.uueeeeeeeeeieeee e ettt et tteee e e ettt tee e e e e e et tttae s e e e eet st aase s e e e etas e se s e e s astaaassaaaetassaassesaaestssaasssasssssannssssenssssans
EvoStream Media Server Command LiN@ DEfiNitiONccc..uuuevieeeeeeeieiieeee e e e ettt e e e e e sttt e e e e e e e st raaaeeeessasssaeaaans 21

EIMIS BASICSoiiiiiiiiiiiiiinniiiiiiiiatiiintiitssiiistsmassiistessassesseesssssestesssssissssssssssssessssssssesssssssssesssssssssesssssssssssssssssesssssssssesnsssssssannss 22

STREAMS ettt s e s s e s e s e s e s e s e e e e e e e e e e e e aeaeeeaateaeaaa et et etaeaeaeaeaeaeaeteeeteteeteteteteteteteteteterereteteterettttttate

CONFIG FILES

© 2013 EvoStream, Inc. All rights reserved. Page 2 of 78

Config Overviews
V/IDEQ COMPRESSIONSveeueveesuseesusesaseessesassseessseesssessssessssessssesansssssssssssssssssessssessnsessssesansasensssesssessssessssessssesansessnsssensessssssessasesns
(o cTc] [PPSR

Log Accumulation

L LT Y o N 25

APT DEFINITION 1etteuuttteteutteesnutteessueeeesaseaeesauseeesasseeesausseesssseeessssseessnsssesssssssesssssseessnsssesssssenesssssseessnsssessssteesssnssseessseeessnseessnnns 27
Y Ty Y o 1 Y PSP PUPP P PP 28
USER DEFINED VARIABLES .. .ttteeeuttteeesttteessuuteeessuteeesssteeesassseessssteessnssesesansseessasseesssnsssessnnssesssnsseesssssseesnnsesessassseessnsseeesnsseessnssees 29
EMSDEMO.HTML
EVENT NOTIFICATION SYSTEMiiiiieeeeuuunnnssiiiiisniniiinmmeesssssssssssssssssssssssmmesssssssssssssssssssssssssssssess 30
LIST OF EVENTS «..ttteeeitteeeeitteeeetteeesetteeessutteeestteeesaasteeesasaaeesaaseeeeansteeesasaeeeaasseeeeaabeeeesanseeeesasaeaeenabeeeesnsaeeesasbeeeesabaeeesnssaeesnnnses 30
CONFIGURING EVENT NOTIFICATIONS ... euutteeestteeeesutteeesuateeestaeeesassaeessssesessnsseeesssssseessssssessnsssessnsssessnssseessnssesessssseessnsseeesnnsseessnsees 30
APPLICATION VS SERVER EVENTS .ciiuttiieiiuittteiitieeeetteeeseitteeestteeessuteeessataeeesaasaeeessssaeesaaseseesasbaeesassaeesanseaessnsteeesansseeesnsseeessnssenennnne 30
SECURITY AND AUTHENTICATIONiiiiiiiiiiiinneeennnesssssiiisssiiiieeessnns 31
STREAM ALIASING «.uetteeeeuutteesutteeesuseeesaueeeesasseeesssseessassseessssseeessasseessnsssesssssssessnssseessasssesssssenessnssssessnsseessnsseeessnssseessseeessnseessnnns 31
COMMON AlIQS CONFIGUITTIONScveeeeeieeeeee et e e e ettt e e e e ettt e e e e e e s s aaaaaeeaaastsesaaaaeeesassssssaaaaeesassssssanasaaaaaaes 31
INBOUND AUTHENTICATION ..vtteteuutteeeautteesnuuseeesuseeessnsseeesssseessssseesssnssssssnsssessasssesssssesssnssssssnsssesssssssesssnsseesssssseessnsseessnssseesssseees
OUTBOUND AUTHENTICATION
CLIENT AUTHENTICATION 1ttetuutteeestreeesausaeesssseeessssseeesssseesssseessassssesssssessnssssesssssssessssssessnssssssssssssssassseessnssessssnsseessnsseeesnssseessssees
ENCODER/USER AGENTS ..uvveeuteeeueeetesessseessseessseesssesassessssesasessnsssansesesssssssssssssessssesssessssessnsesssssansesessssssssessssessssesssessnsessnsessnseses
PROTOCOL SUPPORT AND SPECIFICS......cccceitiiiiiiiiiiniiiniresesssssssssssssissssimmmsesss 35
REAL TIME MESSAGING PROTOCOL (RTIMIP) .. .cciiiiiiiie ettt e e ettt e e e e e e ettt e e e e e e e e e ettt e e e eaeesesaantaaseeaaeeesanssasaesaaaeseaannsraseaaaeeaan 35
LT =X [T B o L L 35
OULbOUNT RTMP (LIVE QIO VOD) ...ttt ettt e e e e e e e ettt a e e e e e e e tb e s e e e e eeesstttssseaaaeesesssssanasaaeneaas 36

LR L L UL T=2 3 A o] O 37
REAL TIME STREAMING PROTOCOL (RTSP) .. eieeiiiiiieie ettt e ettt e e e e e e ettt e e e e e e e e etaa b e e e eaeeseaassaaseeaaeeesanssasaeeaaeeeeaannsrareaaaeeasan 38

Ingesting RTSP

OULDOUNT RTSP (LIVE QNA VOD) ...ttt et e e ettt a e e e ettt e e e e e e e e tb s e e e e e e e s stttssseaaaeesasssssanaaaaeneaas 40
MPEG TRANSPORT STREAM (IMPEG-TS) .. iiiiiiiiie e e ettt e e e e e e ettt e e e e e s ettt e e e e e e eeeseataabaeaeaaesesastaaseeaaeeesasbasaesaaaeseaannsaaseaaaeaasan 41
HTTP LIVE STREAMING (HLS) ittt ettt ettt e e e e e ettt e e e e e e s e ettt e e e e aaeeee e ataaaeeeaaaeseaassaaseaaaeeesanssasaeaaaaeseasnnsbaraaaaaaasan 42

VBIIMOTIIX DRIM ..ottt e e e e e e s e e e s e s e s e s e s aaasaaaaaaasanasasasaaaaaaaaaaaaaasaaaaaasasasasesasasesess 42

Yy Y ¢ [ol g L 1[0 PN 43

WY 0 o) 1o 14 (ol o | I RN 43

© 2013 EvoStream, Inc. All rights reserved. Page 3 of 78

HTTP DYNAMIC STREAMING (HDS)
WYV o) 1o 14 [l o 1N N
MICROSOFT SMOOTH STREAMING (IMISS) ... ieiiiiiiiti e ettt e e e e e ettt e e e e e e et e e e e e e e e e e e ataaaeeeeaaesesassaaseaaaeeesassasaeeaaaeseannnsrareaaaeaasnn 44

Automatic MSS

(o0 1o 1] Nl ST UR
VIDEO ON DEMAND (VOD) . .uuutiitiieieeeieiitttte et e e e e ettt et e e e e e s et ataeeeeeeeeeaaaataaseaaeseaaanbaaseaaaeeesasssssaeasaaesaaasnsbassaaaeeesanstaaseasaeesanssranneeas 47
LA Y=10 1o Lo RV 0 5 USSR 48

CAPABILITIES ..ceieuuiiiiiinuniiiiinnuniiiiitnasiiitinssiiiietimsssiiseessssissesssssssseesssssistesssssisssssssssssssssssssssesssssssssesssssssssssssssssssssssssssesnnsssns 49

LAZY PULL = .VOD FILES .ttt tutteeuteeeiteeetesestteestseesseessseeasseesssesasseesssaeansesesssessssssssessssessnseesssessnsessnsssansesssssssssssssssesssessssessnsessnsessnseses 49
SERVER=SIDE PLAYLISTS ..uvteiuteesuteeeutesesueeesseeessseessseesssessssessssessssesensssssssssssssesssessssessssessssessnssssnsssessssssssessssessssesansessnsssensessssssensesesns 50
Playlist File..............ccccovueuen....
Playlist Playback
L oY R Y Lo T 1] eV o 1o Lo s SRR

TRANSCODING «.uvtteeeuutteeeaureeesauuteeessutaeesaaseseesauseeesasseeesaussaeesassaeessssseessassaeessssseessnsseessnssseessnsseessnssssessnssseessnsseessnseeesnaseeesnsseeenn
Changing Stream Bitrates

USING DiffErENT COURCESuuvveeaeeeeeeeeee ettt e ettt e e e e e ettt e e e e e ettt aaaeeeeeaasasasaaaeeeassstsssaaaseeasssssssenasaeesassssens
Video OVErlAYS — WALEIMAIKINGcoeeeeeeeeeeee ettt e e ettt e e e e ettt a e e e e e st aaaeeesastsssaaaaaeeessssssssasaaaeessssssees 53
(@] o] o] [I BN 53
EIMIS WEB SERVICES.....cituiitiiuiiiiiuiiieiiuiiieiineiieesiesitessiassressiassssssrsstssssessessstesstssstassssssssssssssssssssssssssssstasstssstasssssssasssnsssnsses 54
EMMS USER INTERFACEcuituiiuiitiiuiiieiiuiiieiieeiieesiesstessiassrsssiassssssssssssssesssssstesstssstassssssssssssssssssssssssssssstasssssstasssssssasssnsssnsses 54
CONFIGURATION FILES.....ieuiiuiiiuiiruiiieiinuiieesianimessiaimesrassressssssssssssssssstasssssstsssssssssssssssssssssstssssssstasssssstsssssssssssssssssssssssasssnns 55
PRIMARY CONFIG (CONFIG.LUA) .. .uuutttteeeeeeeieeiuttaeeeeeeeeeaistaaseeeaeeaaasassessaaassaaasssssssaaaseesaassssssssaessasasssassaaasessaassssssssaassenaansreseeaseeasnn 55
Contents Of the CONFIGUIATION filueeeeeeeeeeieee ettt e e e e e ettt a e e e e e e ettt eaaaeeesstsaaeaaaeesaassssssnaaaaeanaas 56

logAppenders
Lo o] o) [ole L1 o] KOOSR
APPIICAEION DEFINITIONveeeeeee ettt e ettt e e e e e ettt a e e e e eee sttt s eeaaaaeeaatsssasaaaeeeeaastsssaaaaeeassssssssnaaaaesaaias 61
[0 [olol=] o) (o] (OO UUUPT SR PPPPPTIIRS 63
QUEOHLS ...ttt a e 66
QUEOHDS ...ttt 67
QUEOIVISS ...ttt e e e s 67
LTt Lo R Lo g [-2 UURU P 68
Lo TV o T=TaFa (ol 4 Lo BT T ST 69
eventlLogger
L [(Y ole o |- GO TSR PPPUPRRNE
Lo [PP OUT PN 75
AUTHENTICATION (USERS.LUA) ..t tttteeeeeeieiuttteeeeeeseaaitraseeaeeeesaassssesasassaaasssasssaassessasssssssasesssasssssssesaessanassssssssesssesansssssesssessensssssneses 76
PUSHPULLSETUP.XML
CONNLIMITS. XML 1 uttteeeeuutteesnutteesssteeessueaeesssteessssseessassseessnsseesssnsssesssssesssssesessnssssessasssesssssenessnsssssssnsssessnsseeessnsseeesnseeessnsseeennnns
INTEROPERABILITY ..cccuuuuiiiiiiiiiniiiiiiieeesssssssssssissssmmmssssmmmeessess 77
STREAM SOURCES. ...ttt teuttteesautteesstteeesaueeeesausteeessteeesassaeesssseeesanseeessssseesssseeessnssseessnsssesssssenessnssssessnsseessnsseeessnsseeesnseeessnsseeennnns 77
STREAM PLAYERS. ...ttt ieuutteeeiutteeesttteessuteeesuteeessasteeesusaeessasteeesaaseeeesassaeeeanbaeesanssaeesaaseeeeesbeeesanssaeesaasaaeeasbeeesansseeesnssaeessnsseeesnnns 77

© 2013 EvoStream, Inc. All rights reserved. Page 4 of 78

AIKAMAL .« ettt ettt e et ee e e et e e ettt e e e st eeeaaeeeaaa e staaeeetuaeetnaaaetta ettt e ttaaeataatttaaettaeeetneaettaeetttaeaettaaaraneaettaaaaranaas 77

OTHER CDINS .ttt et ettt e e e e ettt e e e et e etaa e e e e e et e tata e aeeeaaeaaaa s eeeeeaasaaaa s eeeeeessaa s eeeeaeasssaneeeeenssannsseeeesnsssnnssseeenssssnnnseeeeeessnnnns 78

IVHISCELLANEQUS EXAMPLES. ...ceuuiiiteeeiiieeeetiee e e tte e ettt e e e tte e ettt eeeat e e s ataeeeaanaeasan s ssanasannsasssanastnnasssnsasssnnasssnnssssnnsessnnsesssnneessnnseres 78
© 2013 EvoStream, Inc. All rights reserved. Page 5 of 78

About this Document

Intent

This document provides instructions on how to use the EvoStream Media Server. It will cover the
basics of starting the server as well as some advanced topics like modifying configuration files.

Audience

This document is written for users of the EvoStream Media Server. It is expected that you have a basic
understanding of multimedia streaming and the technologies required to perform multimedia
streaming.

© 2013 EvoStream, Inc. All rights reserved. Page 6 of 78

Document Definitions

CDN Content Delivery Network

EMS EvoStream Media Server

HTTP Hypertext Transfer Protocol. The protocol used for standard web
pages

IDR Instantaneous Decoding Refresh — This is a specific packet in the
H.264 video encoding specification. It is a full snapshot of the video
at a specific instance (one full frame). Video players require an IDR
frame to start playing any video. “Frames” that occur between IDR
Frames are simply offsets/differences from the first IDR.

JSON JavaScript Object Notation

Lua A lightweight multi-paradigm programming language

RTCP Real Time Control Protocol — An protocol that is typically used with
RTSP to synchronize two RTP streams, often audio and video streams

RTMP Real Time Messaging Protocol — Used with Adobe Flash players

RTMPT Real Time Messaging Protocol Tunneled — Essentially RTMP over
HTTP

RTP Real-Time Transport Protocol — A simple protocol used to stream
data, typically audio or video data.

RTSP Real Time Streaming Protocol — Used with Android devices and live
streaming clients like VLC or QuickTime. RTSP does not actually
transport the audio/video data, it is simply a negotiation protocol. It
is normally paired with a protocol like RTP, which will handle the
actual data transport.

swfURL Used in the RTMP protocol, this field is used to designate the
URL/address of the Adobe Flash Applet being used to generate the
stream (if any).

tcURL Used in the RTMP protocol, this field is used to designate the
URL/address of the originating stream server.

URI Universal Resource Identifier. The generic form of a “URL”. URI’s are
used to specify the location and type of streams.

VOD Video On Demand

© 2013 EvoStream, Inc. All rights reserved.

Page 7 of 78

About the EvoStream Media Server (EMS)

What is EMS?

EvoStream is an enterprise-strength media server capable of delivering your live and on-demand
content to any screen with an unbeatable cost of ownership. With EvoStream, you can expand your
audio/video/data delivery to all popular media platforms including Adobe® Flash®, Apple® iOS
devices and QuickTime, IPTV, Microsoft® Silverlight®, Android, Blackberry®, and other 3GPP

devices into a single workflow.

Why use the EMS?

EvoStream's unique architecture significantly increases I/O performance compared to Java-based
media servers, and is the only unified media server capable of running on virtually any platform (Linux,
Windows, Mac 0SX, etc.) including embedded devices (encoders, IP cameras, DVRs, and more).

Key Features and Benefits of the EMS

EvoStream Media Server is not just a multi-format, multi-protocol server that delivers your media rich
content across multiple screens and platforms, simply put, EvoStream is the most efficient and flexible
streaming server available. It delivers enterprise strength content at a cost-lowering performance. For
a better understanding, refer to the picture and descriptions below.

g L)
3 Ethernet or HD- @m —— t;%HTTP, RTMP,

501 Seream P e ete. CDN
_—)

EvoStream enabled RTSP,
MPEG-TS, RTMP encoder ey, @ Flash

) / y
P R;irngTr«gR ; @ QuickTime
- = > EvoStream

media server

AL N Media Cache
(X7 > > E IPTV
N
Supports H.264,AAC, MP3, Delivered as a
MP4, FLV, and mpeg-ts standalone serveror = > Apple iOS
embedded technology Device

© 2013 EvoStream, Inc. All rights reserved. Page 8 of 78

High Efficiency
The EMS has the smallest CPU and memory footprint possible while still being capable of handling

approximately 2,000 simultaneous connections per Intel style CPU core. In other words, you
will never max out on hardware resources before reaching your bandwidth limitations.

Extensible

Never write custom modules again or be limited to a single programming language to extend server
functionality for your application and infrastructure. The EMS has a diverse set of run-time APls
including standard HTTP calls, PHP, Lua, or C++, allowing for quick and easy integration of EvoStream
into existing workflows.

Along with the Runtime API, the EMS also provides an Event Notification System, which allows you to
completely tailor the behavior of the EMS. Automate stream routing, dynamically create HLS or HDS,
or simply monitor your servers activity with a simple RESTful monitor!

Unified

Capable of ingesting a single live H.264 video stream from either an MPEG-TS, RTMP, or RTP encoder
and concurrently transforming and redistributing the stream to any other endpoint including PCs,
Macs, mobile phones, tablets, and televisions. Our commitment to standards ensures that EvoStream
fully implements each protocol we support.

Cross Platform
Built from the ground-up to be truly platform agnostic and capable of being delivered on virtually any
operating system including embedded systems such as encoders, IP cameras, DVRs, and more!

Scalable

Whether serving a few users to hundreds of thousands, EvoStream can meet your live and on-demand
streaming needs through robust load-balancing allowing you to infinitely scale as needed while
keeping your hardware and licensing costs at an absolute minimum.

Reliable

Proven and tested under high-traffic environments and deployed worldwide by enterprise content
publishers and service providers that demand maximum uptime and reliability.

How does it work?

EvoStream Media Server runs as a separate application which you can send video and audio streams
to. You can then connect to the EMS with a variety of players or other servers and use the Runtime API
to push streams out or pull new streams in.

© 2013 EvoStream, Inc. All rights reserved. Page 9 of 78

Stream Routing

PUSHEIPULL

stream stream

EvoStream's rich set of APIs includes pull/push streaming, which allows you to easily publish or
consume RTMP/RTSP/HLS/MPEG-TS/etc streams to and from other locations such as a CDN or a
service provider.

Stream Transformation

4
-
\

d—C
NS

Whether you want to publish RTMP from RTSP, HLS from MPEG-TS, or any other possible combination
of streaming protocols, EvoStream truly unifies all streaming technologies into a single workflow.

Where will it run?

On practically everything! It runs on Windows, Linux, Mac OSX, BSD and Solaris. It can be hosted on a
robust server or on a small ARM based IP Camera, or anything in-between.

Specifically, the EMS can be run on:

Windows 7, Vista, Server 2008*
Linux: Debian, CentOS/RedHat, Ubuntu, SUSE, and others
Mac OSX
FreeBSD
OpenBSD
* Please note that the EMS cannot be run on Windows XP, Windows Server 2003 or previous.

What can be connected to it?

EMS can be connected to anything that puts out a standard media stream. The EMS can ingest RTMP,
RTSP/RTP, MPEG-TS, LiveFLV. The EMS can also be configured to ingest a feed directly from a
hardware encoder chip (for embedded applications).

© 2013 EvoStream, Inc. All rights reserved. Page 10 of 78

Installation and Startup

Obtain a License

A license file is required to run the EvoStream Media Server (EMS). EvoStream offers 30-day trial
licenses which can be obtained from the EvoStream website:
https://www.evostream.com/products/dltrial. Licenses can be purchased from EvoStream directly,
contact sales@evostream.com, or via the EvoStream Website:

https://www.evostream.com/purchasenow

Linux Installer
EvoStream provides standard Linux installers for the EMS. The Linux EMS installer will install the
following packages and software:

* EvoStream Media Server
* Apache HTTP Server
* AVConv Encoder binary

The following graph shows the installer targets and dependencies:

evostream-
keys

evostream-
web

evostream

evostream-
mediaserver

evostream-

© 2013 EvoStream, Inc. All rights reserved. Page 11 of 78

To use the Linux installers, you must follow these instructions. Please note that Steps 2 and 3 must be
executed only once.

1) Prerequisites: Administrative privileges are required. This can be accomplished in many ways.
a. sudo utility available: "S sudo su -"
b. sudo utility not available "$ su -"
2) Retrieve the script used to install the EvoStream software repository and store it
a. Debian based Linux distributions (Ubuntu or Debian)
wget http://apt.evostream.com/installkeys.sh -O /tmp/installkeys.sh
b. RedHat based Linux distributions (CentOS, Fedora, RHEL 6)
curl http://yum.evostream.com/installkeys.sh -o /tmp/installkeys.sh
3) Execute the script to install the EvoStream software repository
a. #sh /tmp/installkeys.sh
If successful, the following message should be printed on the console:
"EvoStream keys installed successfully"
If errors occur, please report back the error message to suport@evostream.com

At this stage, the EvoStream software repository is successfully installed and you can install
packages from it. Steps 2 and 3 must be executed only once.

The following steps are used to install the EvoStream Media Server, and can be repeated to
update the EMS to the most recent release.

4) Install EvoStream Media Server. Administrator privileges are required.. (refer to step 1.1. for
details)
a. Debian based Linux distributions (Ubuntu or Debian)
apt-get install evostream-mediaserver
b. RedHat based Linux distributions (CentOS, Fedora, RHEL 6)
yum install evostream-mediaserver
5) Install the license file. Still having the administrative privileges (refer to step 1.1), copy the
license file into /etc/evostream
cp /path/to/License.lic /etc/evostream/License.lic
6) Run EvoStream Media Server
a. Start the EMS as a daemon/background process
service evostreamms start
b. Stop the EMS
service evostreamms stop

© 2013 EvoStream, Inc. All rights reserved. Page 12 of 78

c. Restart the EMS
service evostreamms restart
d. (Re)Start the EMS in console mode
service evostreamms start_console

Download and Extract

For Windows distributions, or if you choose not to use the Linux installers, you can install the EMS from
a simple archive file (Zip or Tar). The latest EMS Release can be found on the EvoStream website:
http://www.evostream.com.

You will need to choose the most appropriate distribution for the Operating System that you are using.
Once you have downloaded your distribution, you simply need to extract, or unzip, the EMS. The
location of the installation is not important. However, for safety, the EvoStream Media Server should
NOT be installed into the web-root of the target computer (if one exists).

If you cannot find a suitable distribution, please contact us at sales@evostream.com, and we can

possibly provide a custom compilation for your Operating System of choice.

Platform Verification

If you are unsure if the distribution you downloaded is appropriate for your Operating System, you can
use the platformTests program. This program is available with all distributions and provides a suite of
platform compatibility tests. On all systems, open a console or terminal (command prompt) and run
the platformTests executable. It will print out the results of the platform compatibility tests. If the
test succeeds, then you have an appropriate distribution!

Linux Limitations

Linux systems place limits on the number of sockets and file descriptors a process may use. This will
apply to the EMS as well. If you plan on using more than 1024 connections at one time for your server,
you will need to modify the following configuration file: /etc/security/limits.conf

The following lines will need to be added/modified:

soft nofile 16384
hard nofile 65536
soft nproc 4096

hard nproc 16384

© 2013 EvoStream, Inc. All rights reserved. Page 13 of 78

Distribution Contents

Linux Installer

/
— etc
L— evostreamms
l— config.lua
License.lic
L— users.lua

c
7]
S

evostreamms
evo-avconv

1E

T

h

wn
[
m

r
evo-avconv
L— presets
L— [transcode preset files]

T

doc
L— evostreamms
— API Definition.pdf
— copyright
— EMS How Tos.pdf
— EMS User Guide.pdf
— Evostream Media Server EULA vi1.pdf
— Quick_Start_Guide.txt
— version

— BUILD_DATE

': BUILD_NUMBER

CODE_NAME

— 0S_NAME

— 0S_VERSION

L — RELEASE_NUMBER

— var

— evostreamms
I— media
| — AC-DC.mp3 (In example..)
—— bunny.mp4

— test.flv

— auth.xml

— bandwidthlimits.xml
— connlimits.xml

—— pushPullSetup.xml

— log
L— evostreamms
l— events.txt
evostreamms.12558.1362704071170 (In example..)
evostreamms.12559.1362704076171

L— run
L— evostreamms
L— evostreamms.pid

© 2013 EvoStream, Inc. All rights reserved.

Page 14 of 78

Linux Archive Distribution

./

— BUILD_DATE

— README. txt

— bin

— evostreamms

— platformTests

— evo-avconv

— emsTranscoder.sh
— run_console_ems.sh
— run_daemon_ems.sh
— config

— auth.xml

— bandwidthlimits.xml
— config.lua

—— connlimits.xml

— pushPullSetup.xml
— users.lua

— demo

— baseb64.js

— emsdemo.html

— API Definition.pdf

— EMS How Tos.pdf

— EMS User Guide.pdf

— Evostream Media Server EULA v1.pdf
— Quick_Start_Guide.txt

— evo-avconv-presets

L— [transcoding preset files]

— logs

I: events.txt
evostreamms.12558.1362704071170 (in example...)
— media
Samplel.mp4 (in example..)
SongSample.mp3

© 2013 EvoStream, Inc. All rights reserved.

Page 15 of 78

Windows ZIP Install

./

config
— auth.xml
— bandwidthlimits.xml
— config.lua
— connlimits.xml
— pushPullSetup.xml
— users.lua
demo
— baseb64.js
— emsdemo.html
doc
— API Definition.pdf
— EMS How Tos.pdf
— EMS User Guide.pdf
— Evostream Media Server EULA v1.pdf
— Quick_Start_Guide.txt
evostreamms.exe
evo-avconv-presets
L— [transcoding preset files]
logs
— events.txt
L — evostreamms.12558.1362704071170 (in example..)
media
— samplei.mp4a (in example..)
L— songSample.mp3
platformTests.exe
run_console_ems.bat
services
ems
— create.bat
| |— remove.bat
I: start.bat
stop.bat

srvany.exe

L

© 2013

EvoStream, Inc. All rights reserved.

Page 16 of 78

File Descriptions

Evostreamms(.exe)

The EvoStream binary itself

run_console_ems.sh

Run script used on Linux to start the EMS as a console application. This is
useful for new users as it provides instant feedback on the console when
commands are entered and shows errors if they occur in new streams.

run_daemon_ems.sh

Run script used on Linux to start the EMS as a background application. Use
this for production deployments. It requires that you create the user
“evostream”, the script will not work without it. Please feel free to modify
this script to use a different user.

When using the daemon script, to validate that the server is running,
you can issue the following command at the prompt:

ps -ef | grep evostream

This will print out information which will let you know if the server is
running or not.

run_console_ems.bat

Run script on Windows which runs the EMS as a console application. This is
useful for new users as it provides instant feedback on the console when
commands are entered and shows errors if they occur in new streams.

create.bat Script to create a Windows service for the EMS. This will also start the EMS
as a background process. This must be run with Administrative privileges as
it writes to the Windows Registry. This only needs to be run once.

remove.bat Script to remove the Windows service for the EMS and remove the relevant
Windows Registry entries. This must be run with Administrative privileges.

start.bat Script to start the EMS Windows service. This script will not work if
create.bat has not been run first.

stop.bat Script to stop the EMS Windows Service.

Srvany.exe This is a binary provided by Microsoft and is used to create the Windows
Service.

License.lic This is the license file required to run the EMS. It can be placed in the
config, bin, or /etc/evostreamms/ folders, or in whatever folder the
evostreamms binary resides.

Configuration Files

config.lua The main configuration file used by the EMS. The contents of this file are
detailed later in this document.

users.lua Defines the valid authentication the server will require when streams are

pushed into the EMS.

© 2013 EvoStream, Inc. All rights reserved.

Page 17 of 78

pushPullSetup.xml

This file is used by the EMS to store stream action commands that are made
through the Runtime API. This file may not be modified. At startup, if the
EMS detects that the file has been modified it will rename the file and start
with a blank/fresh copy.

connlimits.xml

Defines the maximum number of concurrent connections you want the EMS
to accept

bandwidthlimits.xml

Defines the maximum amount of bandwidth you want the server to be able
to use (set the instantaneous bandwidth cap).

Documentation

EMS User Guide.pdf

This Document

API Definition.pdf

Provides descriptions for all of the EMS’s Runtime APIls and Event
Notifications

EMS How Tos.pdf

Provides example commands for performing basic tasks with the EMS

EvoStream Media Server
EULA v1.pdf

The End User License Agreement for the EMS

Misc

demo/emsdemo.html

The emsdemo.html file can be opened directly in a web browser and

demo/baseb4.js provides some example commands which can be sent to the EMS.

media/ The media directory is the default location for video-on-demand files. This
is where the EMS will look when VOD requests are made. This default
location can be changed in the EMS main configuration file, which is
typically config/config.lua

logs/ This is the directory that EMS will write its logs to. This default location can

be changed in the EMS main configuration file, which is typically
config/config.lua

© 2013 EvoStream, Inc. All rights reserved. Page 18 of 78

Starting the Server

Linux, BSD and Mac OSX Distributions
There are two run scripts that can be used to start the EvoStream Media Server:

run_console_ems.sh : Simply runs the Media Server inline, using config/config.lua as the main

server configuration

run_daemon_ems.sh : Runs the EvoStream Media Server as a background process. The script
will attempt to assign the run-process to the user "evostream".

Both commands can be directly executed:

./run_console_ems.sh

or

./run_daemon_ems.sh

*Important Notes:

1. Forrun_daemon_ems.sh, if the "evostream" user does not exist, an error will be printed to the
screen. Despite the error, the EMS will probably have been started. To check if the server is
running, you can issue the following command:

ps -e | grep evo

This command will print differently on different operating systems, but it should let you know
that the server is running.

2. The user used by run_daemon_ems.sh can easily be modified by changing the value after the "-
u" in the script itself.

3. The user running the EvoStream Media Server must have sufficient permission to open and
bind to network ports

Linux Installer Distributions
Running the EMS after installation is as simple as starting the EMS service:

service evostreamms start
service evostreamms stop
service evostreamms restart

The EMS can also be run in console mode:

service evostreamms start_console

© 2013 EvoStream, Inc. All rights reserved. Page 19 of 78

Windows Distributions

For Windows distributions, there is a run script for running the server in a command prompt:

run_console_ems.bat : This script simply runs the Media Server inline, using config/config.lua
as the main server configuration. You can simply double-click this file to start the server.

There are several other scripts that can be used to create and manipulate the server as a Windows
Service. These scripts need to be run as an administrator. You can verify they have worked by opening
the Windows Services tool and looking for the EvoStreamMediaServer service.

services/ems/create.bat : Creates and starts the Windows service
services/ems/remove.bat : Removes the Windows service
services/ems/start.bat : Starts the service if it has not already been started
services/ems/stop.bat : Stops the service if it is currently running

Startup Success
For either Windows or Linux/BSD/OSX, when you run the EMS as a console application, you should see

the following screen indicating the server is up and running:

© 2013 EvoStream, Inc. All rights reserved. Page 20 of 78

EvoStream Media Server Command Line Definition

The evostreamms executable can be run with a few different options. The command line signature is as
follows:

evostreamms [OPTIONS] [config_file_path]

OPTIONS:

--help
Prints this help and exit.

--version
Prints the version and exit.

--use-implicit-console-appender
Adds extra logging at runtime, but is only effective when the server is started as a console
application. This is particularly useful when the server starts and stops immediately for an unknown
reason. It will allow you to see if something is wrong, particularly with the config file.

--daemon
Overrides the daemon setting inside the config file and forces the server to start in daemon mode.

--uid=<uid>
Run the process with the specified user id.

--gid=<gid>
Run the process with the specified group id.

--pid=<pid_file>
Create PID file. Works only if --daemon option is specified.

© 2013 EvoStream, Inc. All rights reserved. Page 21 of 78

EMS Basics

There are a number of things that are good to keep in mind when interacting with the EvoStream
Media Server.

Streams

Stream directionality is always from the perspective of the server itself. So when a pullstream is
executed, you are always telling the server to go get a stream to bring into it. Conversely pushstream
implies taking a stream that is already within the EMS and forcibly sending it to an external destination.

When you pull, push or create a stream the command is logged in the config/pushPullSetup.xml
configuration file. This is the default behavior and allows commands to be persistent if you stop the
server and then restart it. In other words, if you pull in two streams, and then stop the server, the next
time you start the server it will try to reconnect those two streams.

The logging of commands can be skipped by changing the “keepAlive” parameter in pullstream
and pushstream. By setting keepalive=0, the command will not be logged, and if the stream
disconnects the server will not try to reconnect to it.

If you wish to “start clean” the pushPullSetup.xml file can simply be deleted prior to starting the
EMS.

All in-bound streams have a localStreamName that is used to uniquely identify that stream. It is used
in play requests and can be used to identify streams in some API calls. It is important to note that no
two streams may have the same localStreamName. The EMS will return an error if you try to “pull” a
second stream with a localStreamName that has already been used.

Config Files
The Configuration files are described in better detail later in this document. This will serve as more of
an introduction to the configuration files used by the EvoStream Media Server.

LUA

The EMS uses the LUA scripting language for many of its configuration files. LUA is an extremely
powerful scripting language that allows you to do many things from executing programs to interacting
with databases. Typically, the EMS configuration files only trivially use LUA. The configuration files are
no more than a collection of statically defined LUA variables.

The use of LUA provides users with a unique ability to dynamically configure the EvoStream Media
Server. For example, if you wanted to pull authentication information from a database that is regularly

© 2013 EvoStream, Inc. All rights reserved. Page 22 of 78

updated you would simply need to replace the contents of the users.lua file with the LUA script to
query your authentication database. The EMS will then automatically query your database for
authentication details at runtime!

The LUA scripting language is easy to learn and has had excellent acceptance in the software
community. The game World of Warcraft relies heavily on the LUA scripting language. You will be able
to clearly understand the contents of the EMS configuration files even if you have never seen a LUA
script before.

Config Overviews

config.lua — This is the main configuration file for the EMS. Config.lua defines all of the startup
parameters used by the server, including the location and names of all of the other configuration files.
If you wish to change the name of any of the subsequent configuration files, you can do so here. This
file is also just a command-line parameter to the EMS executable. The run-scripts provided with the
EMS distribution use this file by default. If you want to change the location or name of this file you can
simply modify the run scripts to use a different file.

If you modify this file and the server then fails to start you have made an error. You can either roll-
back your changes or you can use the --use-implicit-console-appender command line parameter
to get extra debug information about what failed during startup.

pushpullSetup.xml — The most important thing to know about the pushPullSetup.xml file is that YOU
CAN NOT MODIFY THIS FILE! This file is used for internal purposes only. If, during startup, the EMS
detects that changes have been made to the pushpullSetup.xml file it will rename the existing

pushpullSetup.xml file and start with a fresh configuration.

Now that the disclaimer is out of the way, it is important to understand how this file is used. When a
pullstream, pushstream, createHLSStream, createHDSStream, createMSSStream, etc, command is
executed, that command is logged to this file (assuming the keepAlive flag is 1, which it is by default).
When the EMS is started, it parses this file and attempts to recreate all of the connections. These
configuration entries can be removed by issuing removeConfig commands, or by setting the keepAlive
flag to 0 when the initial command is made.

If you wish to have a “clean start” of the server, with no previous streams, you may delete this file
before starting the EMS.

© 2013 EvoStream, Inc. All rights reserved. Page 23 of 78

Video Compressions

The EvoStream Media Server requires that the video streams be encoded as H.264 data. H.264 has
many different options and configurations. The EMS can support virtually every valid H2.64 stream
with a few exceptions:

Widely Varying GOP Sizes — The EMS works best when there are a consistent number of P-Frames per
I-Frame. This is particularly true when creating file-based outbound streams like HLS.

Logging

The EMS provides system level logging which is turned on by default. This logging assists in integration
and debugging efforts. The logs can be found in the logs/ directory in either the main evostream
distribution (from archive installation) or in the /var/log/ directory when using the Linux installer.

Log Accumulation

The EMS logs constantly while it is running, which may have negative impacts on disk usage over the
course of time. This can be mitigated by either quieting the logs, or disabling logging all-together. To
quiet logs, edit the logLevel configuration value in config.lua. 6 is the highest (most prolific) level of
logging, 0 is the lowest.

To disable logging completely, remove or comment out any “file” type logAppender in the config.lua
file. Alternatively, set logLevel to -1 to disable logging without removing the logAppender entry.

See the configuration section of this document for more information on manipulating the config.lua
file.

© 2013 EvoStream, Inc. All rights reserved. Page 24 of 78

Run-Time API

While the EMS has a “great” User Interface, users typically interact with the EMS through the Run-Time
API. This API, which is used by the Ul, provides a whole suite of ways to interact with the EMS. It can
be used to create custom User Interfaces, hook the EMS up to existing systems, integrate it with other
pieces of software and much more!

Accessing the Runtime API

The EvoStream Media Server (EMS) API can be accessed in two ways. The first is through an ASCII
telnet interface. The second is by using HTTP requests. The API is identical for both methods of access.

The API functions parameters are NOT case sensitive.

ASCII
The ASCII interface is often the first interface used by users. It can be accessed easily through the
telnet application (available on all operating systems) or through common scripting languages.

To access the APl via the telnet interface, a telnet application will need to be launched on the same
computer that the EMS is running on. The command to open telnet from a command prompt should
look something like the following:

telnet localhost 1112

If you are on Windows 7 you may need to enable telnet. To do this, go to the Control Panel ->
Programs -> Turn Windows Features on and off. Turn the telnet program on.

Please also note that on Windows, the default telnet behavior will need to be changed. You will need
to turn local echo and new line mode on for proper behavior. Once you have entered telnet, exit the
telnet session by typing “ctrl+]”. Then enter the following commands:

set localecho
set crlf

Press Enter/Return again to return to the Windows telnet session.

Once the telnet session is established, you can type out commands that will be immediately executed
on the server.

An example of a command request/response from a telnet session would be the following:

Request:

version

© 2013 EvoStream, Inc. All rights reserved. Page 25 of 78

Response:

{"data":"1.5","description”:"Version","status":"SUCCESS"}

To access the API via the HTTP interface, you simply need to make an HTTP request on the server with
the command you wish to execute. By default, the port used for these HTTP requests is 7777. The
HTTP interface port can be changed in the main configuration file used by the EMS (typically
config.lua).

All of the API functions are available via HTTP, but the request must be formatted slightly differently.
To make an API call over HTTP, you must use the following general format:

http://IP:7777/functionName?params=base64(firstParam=XXX secondParam=YYY ..)

For example, to call pullStream on an EMS running locally you would first need to base64 encode your
parameters:

Base64(uri=rtmp://IP/live/myStream localstreamname=testStream) results in:
dXJpPXJObXA6LY9JUC9saXZ1L215U3RyZWFtIGXxVvY2Fsc3RyZWFtbmFtZT10ZXNOU3RyZWFt

http://192.168.5.5:7777/pullstream?params=
dXJpPXJObXA6LY9JUC9saXZ1L215U3RyZWFtIGXxVY2Fsc3RyZWFtbmFtZT10ZXNOU3RyZWFt

PHP and JavaScript
PHP and JavaScript functions are also provided. These functions simply wrap the HTTP interface calls.

They can be found in the runtime_api directory.

JSON

The EMS API provides return responses from most of the API functions. These responses are
formatted in JSON so that they can be easily parsed and used by third party systems and applications.
These responses will be identical, regardless of whether you are using the ASCIl or HTTP interface.
When using the ASCII interface, it may be necessary to use a JSON interpreter so that responses can be
more human-readable. A good JSON interpreter can be found at:
http://chris.photobooks.com/json/default.htm

Configuring and Receiving Event Notifications

The EvoStream Media Server (EMS) generates notifications based upon events that occur at runtime.
These events are formatted as HTTP calls and can be delivered to any address and port desired.

Event Notifications are disabled by default and must be enabled by modifying the EMS config file:
config.lua.

© 2013 EvoStream, Inc. All rights reserved. Page 26 of 78

To enable Event Notifications you will need to Enable/Uncomment the eventLogger section of the

for a single line, or denoted by a “--[[“ to
start a comment block and a “]]--“ to end a comment block. By default the eventLogger section is
commented out using the block style comments, so you will need to remove both the --[[and]]--
strings.

“” “”

config.lua file. Comments in LUA are specified by either a

See the Configuration Files section for more information.

Sinks

Sinks are defined as “a specific destination for events” and can be of two types: “file” and “RPC”. File
sinks simply write events to a file, as defined by the “filename” parameter. This works much like a
system logger. Users can choose the format of the output between JSON, XML and text. JSON and
XML will be formatted as JSON and XML respectively and each event will be written to a single line.
This is done for ease of parsing. The Text format writes to the event file in a way that is easy to read,
where events are on multiple lines. The file sink is off by default, but can be turned on by creating the
sink in the config.lua file.

To receive HTTP based Event Notifications, an RPC type sink must be defined (and is by default). The
URL parameter defines the location that will be called with each event. The URL can be a specific web
service script or just an IP and port on which you are listening. RPC sinks have the option of one of
three serializer types, or in other words, the way the data will be formatted within the HTTP post:
JSON, XML, XMLRPC. XMLRPC events will be formatted as XML using a traditional XML-RPC schema.
The XML serializer type will use an XML schema that is more condensed and specific to the EMS Event
Notification System. The JSON serializer type will have the same schema as XML, but will be formatted
as JSON.

For any Sink, users can define an array of enabledEvents. When this array is present, ONLY the events
listed will be sent to that sink. If this array is not present, ALL events will be sent to the sink. The full
list of events can be found later in this document.

API Definition
The EMS Runtime APl is fully defined in the document: API Definition.pdf

This document can be found in the evostreamms/doc directory.

Please review this document and use it as a reference as you explore the EMS Run-Time API!

© 2013 EvoStream, Inc. All rights reserved. Page 27 of 78

My First API Call

We will start by retrieving an external stream that we can then use to playback. First we will pullin a
test stream. The source URI is:

rtmp://s2pchzxmtymn2k.cloudfront.net/cfx/st/mp4:sintel.mp4

For simplicity, we will be using the ASCII interface to send APl commands to the server. We will use the
telnet utility (available on all operating systems) to do this. Learn more about using telnet to connect
to the EMS in the “Accessing the Runtime API” section above in this document.

1. Runthe EMS. (See Starting the Server)
Open a telnet session to the EMS (port 1112)
3. To pull the stream, type the command below into telnet:

pullstream uri=rtmp://s2pchzxmtymn2k.cloudfront.net/cfx/st/mp4:sintel.mp4
localstreamname=TestStreaml

This will tell the EMS to go get the test stream and name it “TestStream1”.
4. Now that the stream is a part of the EMS, we will want to play it. You can either use the EMS Ul, or
we can use an external player such as JW-Player:

i. Open a browser and navigate to http://www.longtailvideo.com/support/jw-player-
setup-wizard?example=204 . This is the JWplayer wizard.

ii. Change File Properties -> file to be:
TestStreaml

iii. Change External Communications -> streamer to be:
rtmp://localhost/live

iv. Click “Update Preview & Code”.

v. Now just click play!

© 2013 EvoStream, Inc. All rights reserved. Page 28 of 78

User Defined Variables

While the EMS provides an extensive set of APl functions, there may be times where the variables
provided are not sufficient, or where you may need extra information to be associated with individual
streams. To support these needs, the EMS APl implements User Defined Variables. User Defined
Variables can be used with any API function where information is maintained by the EMS (I.E.: Pulling a
stream, creating a timer, starting a transcode job, etc).

To specify a User Defined Variable, you simply need to append a “_’ to the beginning of your variable
name.

The User Defined variables are reported back whenever you get information about the command:
listStreams,

listConfig, Event Notifications, etc.

Some common use cases for User Defined Variables are as follows:

* Setting a timer to stop a stream after a set period of time

setTimer value=120 _streamName=MyStream

setTimer value=120 _streamID=5

These commands will fire a timer event after 120 seconds with the set stream name or stream id
respectively.

e Attach a custom identifier to a local stream

pullstream uri=rtmp://192.168.1.5/live/myStream localstreamname=testl _mylD=5
_myName=secretSquirrel

* Seta custom value on a pushed stream

pushstream uri=rtmp://192.168.1.5/live/myStream localstreamname=testl _mylID=5
_myName=secretSquirrel

EMSDemo.html

Provided along with the EMS is a simple html page which helps you to formulate simple API
commands. The page can be found at:

./evostreamms.../demo/emsdemo.html

Simply double click the html file to open it in a browser.

© 2013 EvoStream, Inc. All rights reserved. Page 29 of 78

Event Notification System

The EMS Event Notification System provides an extremely powerful way of interacting with the EMS.
At the basic level it allows you to easily understand and monitor the usage of your server. You can
either poll and parse the log file, or simply subscribe to the HTTP based notifications sent out by the
EMS. The notifications mean that you can have a fully RESTful monitor, gathering metrics in real
time!

Beyond monitoring and gathering metrics, you can use the Event Notification System to create
custom stream processing. If you want to automatically create HLS/HDS/MSS streams out of new
inbound streams, simply call createHLSStream/createHDSStream/createMSSStream in response to
each “new inbound stream” event. If you want to close inbound streams when the associated
outbound stream is lost, call shutdownStream when you receive an “outbound stream closed” event.

List of Events

The API Definition.pdf document provides a list and full descriptions of each event. Please consult that
document to learn more about the EMS Events.

Configuring Event Notifications

Events can be sent to multiple destinations, or “sinks”, at the same time. A “sink” can be either a file
or a network destination. Multiple sinks can be enabled at the same time, allowing you to both log
events and receive them in your web service(s). These sinks can be configured so that only the events
you will be consuming will be generated. Event Sinks are configured in the config/config.lua file.

Event Notifications are OFF by default. To use the Event Notificaiton System, you must modify the
EMS configuration file.

Please see the Configuration File section below for details on enabling the Event Notification System.

Application vs Server Events
The config.lua file has two eventLogger sections as follows:

1) Application-owned — This is lower in the file and is “inside” the application configuration

I”

section. It configures “application level” events. This is the recommended configuration
section to modify.

2) Server-wide (or default) — This is higher in the file and is at the outer-most variable scope
level. This section configures events that are outside the application or events which the
application level fails to catch. This is typically only for system events like server startup,

server shutdown and application load.

© 2013 EvoStream, Inc. All rights reserved. Page 30 of 78

Security and Authentication

Stream Aliasing

Stream Aliasing is the premier mechanism for securing your online content. You can specify Aliases for
each of your inbound streams. When Stream Aliasing has been enabled, inbound streams cannot be
accessed directly. Instead, you must create aliases for each stream that clients then use to obtain the
stream. It is important to note again that when aliasing is on, streams can no longer be
requested/played by using the localStreamName. In addition, stream Aliases are Single Use, meaning
that once a stream has been requested using an alias, that alias is deleted and is no longer available.
This allows you to tightly control access to your online content.

Stream Aliasing allows you protect your streams on servers that are available to the open Internet.
You can generate stream aliases for use by your website or player/clients. Once the client uses that
alias you can be assured that the stream is again secured until you issue a new alias to an authorized
user. Stream Aliasing can be enabled by changing the value hasStreamAliases in config.lua to true

Aliases can be managed using four APl commands:

addStreamAlias
removeStreamAlias
listStreamAliases
flushStreamAliases

Common Alias Configurations

Pay-wall/Registered User Section

Stream Aliasing allows you to maintain your own client authentication methods, whether that requires
your users to login via your web site, through a mobile app, or some other means. Once a client has
been authenticated via your existing method, you then simply need to issue the addStreamAlias
command to the EMS just before issuing the video link to the client.

For example: a user has logged into her home security account and has just clicked on a link to view
the “front door camera”. Your web server will be called by that link and do the following:

1) Verify the user’s current session
2) lIssue the following command to the EMS: addStreamAlias
localstreamname=privateFrontDoorCam aliasName=pubFrontDoorCam

© 2013 EvoStream, Inc. All rights reserved. Page 31 of 78

3) Serve the player page to the client with the following URI (using flash in this example):
rtmp://MyServer/live/pubFrontDoorCam

When the user’s app or browser loads the player and plays the stream, the alias will be automatically
deleted. This means that if anyone sniffed the link, or if the user copies the link somehow and tries to
play it back directly at a later date, it will fail to play.

Semi-Sticky Aliases

There are some situations where you may not want an alias to be deleted right away: Users may be
prone to refresh their players, connections might be very flakey and so streams may need to be re-
requested, etc.

The best way to address this issue is via Web Services. (Sample/Template Web Services can be
downloaded from the EvoStream Website at http://www.evostream.com/downloads)

Leveraging both the outStreamCreated event and setTimer API (with the timerTriggered event) you can
create your own business rules for setting and removing aliases.

For Example: | want to recreate all aliases automatically, but stop doing so after an hour. This would
mean essentially that the stream link is going to always be valid during the course of that hour. To
accomplish this, | would create a web service listening for outStreamCreated and timerTriggered
events.

* On outStreamCreated: ([barely]pseudo-code follows)

If first access of the stream: setTimer value=3600
If gotTimer==false: addStreamAlias localstreamname=source
aliasName=publicName

* OntimerTriggered:

Set gotTimer=true

Inbound Authentication

The EvoStream Media Server can require that streams be authenticated before they can be pushed
into the server. This is done for protection and so that outside sources cannot overwhelm your server
without your control. Pushing streams is only valid for TCP based protocols like RTMP and RTSP. By
default, the authentication values used by the EMS are defined in the config/users.lua file.

© 2013 EvoStream, Inc. All rights reserved. Page 32 of 78

To Enable or Disable Inbound Authentication you may do either of the following:

1) Comment, or un-comment, out the “Authentication” section in the config/config.lua file.
2) Set the Boolean value in config/auth.xml to true (enabled) or false (disabled).

An important part of inbound authentication for RTMP is validating the “Encoder Agent”. This is
essentially a name that the stream source uses to identify itself. There are generally only a few
Encoder Agents that are used since most encoders mimic the functionality of Adobe’s Flash Media

Encoder. When pushing a stream into the EMS, there are two options when it comes to Encoder Agent
strings:

1) Change your Encoder Agent string to one that the EMS anticipates:
a) FMLE/3.0 (compatible; FMSc/1.0)
b) Wirecast/FM 1.0 (compatible; FMSc/1.0)
c) EvoStream Media Server (www.evostream.com)
2) Add your Encoder Agent string into the list of encoderAgents in the config.lua file.

© 2013 EvoStream, Inc. All rights reserved. Page 33 of 78

Outbound Authentication

When pushing streams, the EMS makes it very easy to provide authentication for sources that require
it. You simply need to specify the username and password in the URI for the push command. The
official format for the URI is as follows:

rtmp://Username:Password@IPAddress:Port/stream/destination

Using this, your pushstream command may look like this:

pushstream uri=rtmp://myname:mypass@192.168.1.5/1live
localstreamname=TestStreaml targetstreamname=PushedStream

Client Authentication

Users may optionally enforce client authentication for RTSP clients. By enabling the
“AuthenticatePlay” parameter within the authentication -> rtsp node of the config.lua file. When
enabled, all RTSP clients must provide a username/password combination specified in users.lua.

Encoder/User Agents

When pushing RTMP there is often the need to change the Encoder Agent used by the EMS. The
Encoder Agent is essentially a sting that identifies the software that is acting as the stream source.
Some RTMP end-points require that streams come from well-known sources. To accomplish this
simply add the emulateUserAgent parameter to your pushStream command. It is often best to use the
FMLE encoder agent:

emulateUserAgent=FMLE/3.0\ (compatible;\ FMSc/1.0)

Please note that the spaces have been escaped so that the parameter is parsed correctly!

For convenience, the EMS provides several shorthand User-Agent strings. These shorthand strings are

not case-sensitive.
emulateUserAgent=evo Resolves as “EvoStream Media Server (www.evostream.com)”*
emulateUserAgent=FMLE Resolves as “FMLE/3.0 (compatible; FMSc/1.0)”
emulateUserAgent=wirecast Resolves as “Wirecast/FM 1.0 (compatible; FMSc/1.0)”
emulateUserAgent=flash Resolves as “MAC 11,3,300,265”

*when using the PullStream command, “evo” actually resolves to “EvoStream Media Server

(www.evostream.com) player”

© 2013 EvoStream, Inc. All rights reserved. Page 34 of 78

Protocol Support and Specifics

This section will dive into the specific capabilities of the EvoStream Media Server. Please keep in mind
that directionality is always from the perspective of the EMS. Therefore “inbound” will refer to any
stream coming into the EMS and “outbound” will refer to any stream leaving the EMS.

Real Time Messaging Protocol (RTMP)

The EMS is fully compatible with the RTMP protocol. This means that it can receive streams from
Adobe’s Flash Media Live Encoder (FMLE), Wirecast, Flash Applets, and many other sources. It also
enables any Flash or Adobe-Air based clients to play streams from the EMS. Some examples of
clients/players that use RTMP are FlowPlayer, JWPlayer and VLC. Using RTMP, you can reach ANY
Flash enabled web browser, which really means that you can reach any browser on Windows, Mac
OSX and Linux.

Ingesting RTMP
There are several ways that the EMS can use RTMP as a stream source. The first method is to use the

Runtime-API to pull a stream from some source. An example of a pullstream command is as follows:

pullstream uri=rtmp://192.168.1.5/1ive/MyTestStream
localstreamname=TestStream

This command tells the EMS to go and get “MyTestStream” from the server at 192.168.1.5, and then
name the stream locally “TestStream”. Please see EMS Basics for more information on local stream
names.

The typical URI format for requesting RTMP streams is as follows:

rtmp://[username[:password]@]IP[:port]/<app name>/<stream name>

The EMS also allows you to PUSH an RTMP stream into it. Software like Wirecast and FMLE prefer
this type of paradigm. The EMS listens for RTMP streams on port 1935, which is the default RTMP
port. You will need to consult the manuals for your stream source to understand how to push a stream.
The EMS can require authentication for streams that are being pushed to it. If authentication is
enabled, you will need to either supply authentication details along with your pushed stream, or
disable authentication for the EMS before the EMS will accept your streams. Please see the Security
and Authentication for more information.

The EMS provides additional RTMP ingest security through RMTP Ingest Points. Please see RTMP
Ingest Points below for more information.

© 2013 EvoStream, Inc. All rights reserved. Page 35 of 78

The EMS accepts RTMP streams pushed both as PUBLISH and RECORD. PUBLISH streams become local
live streams. RECORD streams also become local live streams but are also recorded to file. The
recordedStreamsStorage parameter in the config/config.lua file specifies a default location to place
files when an RTMP RECORD stream is pushed to the EMS.

Please see the API Definition document for more information on APl commands.

Outbound RTMP (Live and VOD)

Any source stream can be played back via RTMP. Most often a user will be using a Flash based player
which will make an RTMP request on the EMS. To request an RTMP stream from the EMS, you need to
use a URI formatted as follows:

rtmp://[username[:password]@]IP[:port]/<live/vod>/<LocalStreamName>

An example of this URI may be:

rtmp://192.168.1.5/1ive/MyTestStream

The EMS can also PUSH streams towards another server or some other destination. The pushStream
Runtime-API function is used to do this. An example of the pushStream API is as follows:

pushStream uri=rtmp://192.168.1.5/1ive/
localStreamName=MyTestStream targetStreamName=PushedStreamName

Please see the API Definition document for more information on APl commands.

RTMPT

RTMP via HTTP is supported by the EMS. RTMPT can be leveraged in exactly the same way as RTMP.
You will simply need to use “RTMPT” instead of “RTMP” in the various URIs and addresses. To enable
the EMS to accept requests from RTMPT clients, you must create an Acceptor (listener) in the
config/config.lua file that looks like the following:

{
ip="0.0.0.0",
port=8080,
protocol="inboundRtmpt"
}s

© 2013 EvoStream, Inc. All rights reserved. Page 36 of 78

RTMPS

RTMP secured by SSL is supported by the EMS. RTMPS can also be leveraged in exactly the same way
as RTMP. In addition to using “RTMPS” instead of “RTMP” in the various URIs and addresses, you will
also need to create and specify a certificate and key to be able to “Serve” RTMPS streams.

You must create a signed certificate file using a library like OpenSSL (*.crt) and a corresponding public
key file (*.pem). You must then create an Acceptor (listener) in the config/config.lua file that looks like
the following:

{
ip="0.0.0.0",
port=8081,
protocol="inboundRtmps",
sslKey="server.key",
sslCert="server.crt"

s

The paths to the sslKey and ssICert are relative to the runtime directory. It may be best to use absolute
paths when specifying those files.

Again, this setup is only necessary when serving these files (clients requesting a stream via RTMPS).
These keys are not used when pushing or pulling a stream since the other side of the transaction will
be acting as the server and will therefore provide its own keys.

RTMP Ingest Points

When Ingest Points are active, the EMS requires streams pushed to the EMS to provide a specific
Target Stream Name. This mechanism provides a robust way to allow trusted partners to easily push
streams to your EMS server.

Ingest Points operate by specifying two linked values: the privateStreamName and the
publicStreamName. Both the privateStreamName and the publicStreamName must be unique within
a given EMS instance. When an RTMP stream is PUSHED to the EMS, the Target Stream Name defined
within the RTMP stream must match one of the defined privateStreamNames. If a match exists, the
stream is accepted and brought into the EMS. This new stream can then be accessed from the EMS
using the associated publicStreamName.

© 2013 EvoStream, Inc. All rights reserved. Page 37 of 78

To enable Ingest Points, you must set the hasingestPoints parameter in the config/config.lua file to
true:

hasIngestPoints=true,

Ingest Points have a full set of API functions which must be used to add and remove Ingest Points. The
API functions are listed here, but please see the API Definition doc for a full description.

* createlngestPoint

* removelngestPoint

* listIngestPoints
Ingest Points are stored by the EMS into the config/ingestPoints.xml file.

Real Time Streaming Protocol (RTSP)

Using the RTSP protocol can many different players and servers, including the native Android media
player. RTSP can be used as both a stream source and as an outbound stream protocol. There are a
few variants of RTSP and so it is important to understand a little bit about the protocol itself.

RTSP itself is just a negotiation protocol. Its job is to set up and coordinate other connections which
will then handle the transfer of video and audio data. Normally, the RTSP transaction will create 4
additional channels, one for audio, one for video, and then two Real Time Control Protocol (RTCP)
connections for syncing the audio and video streams. This means that a typical RTSP stream has
actually 5 separate connections/streams.

In addition to this setup, the audio and video streams can be transferred over a couple of different
mechanisms, namely Real-time Transfer Protocol (RTP) or MPEG Transport Stream (MPEG-TS). The
EMS supports all combinations of RTSP over RTP or MPEG-TS and with or without RTCP channels.

While RTCP channels are usually included in RTSP streams, they are not required components. The
EMS does not, therefore, require them to be present. However, the EMS will wait for a specified
amount of time when a new RTSP stream is introduced while it tries to detect an RTCP channel. During
this waiting period, all packets from the RTSP stream will be dropped! This waiting period can be
adjusted in the config.lua file by modifying the rtcpDetectioninterval parameter which sets the seconds
to wait before starting the stream without RTCP support.

© 2013 EvoStream, Inc. All rights reserved. Page 38 of 78

Ingesting RTSP
There are several ways that the EMS can use RTSP as a stream source. The first method is to use the

Runtime-API to pull a stream from some source. An example of a pullstream command is as follows:

pullstream uri=rtsp://192.168.1.5/MyTestStream
localstreamname=TestStream

This command tells the EMS to go and get “MyTestStream” from the server at 192.168.1.5, and then
name the stream locally “TestStream”. Please see EMS Basics for more information on local stream
names.

The typical URI format for requesting RTSP streams is as follows:

rtsp://[username[:password]@]IP[:port]/<stream or sdp file name>

When pulling an RTSP stream via an HTTP Proxy, the pullstream command will be as follows:

pullstream uri=rtsp://[username|[:password]@]HostName/StreamName
httpProxy=IP[:PORT] localstreamname=TestStream

To pull an RTSP stream via HTTP the httpProxy parameter can again be leveraged:

pullstream uri=rtsp://[username[:password]@]HostName/StreamName
httpProxy=self localstreamname=TestStream

Please note that the httpProxy=self parameter simply implies that there is NO proxy, and to pull the
stream, via HTTP, directly from the specified URI.

The EMS also allows you to Push an RTSP stream into it. The EMS listens for RTSP streams on port
5544, which is NOT the default RTSP port of 554. This requires you to specify the port of 5544 when
pushing streams into the EMS. The port the EMS listens on can be modified by changing the
appropriate value in the config.lua file. You will need to consult the manuals for your stream source to
understand how to push a stream.

The EMS can require authentication for streams that are being pushed to it. If authentication is
enabled, you will need to either supply authentication details along with your pushed stream, or
disable authentication for the EMS before the EMS will accept your streams. Please see the Security
and Authentication for more information.

Please see the API Definition document for more information on APl commands.

© 2013 EvoStream, Inc. All rights reserved. Page 39 of 78

Outbound RTSP (Live and VOD)
Any source stream can be played back via RTSP. Some common RTSP players are VLC, Android Devices

and Quicktime. To request an RTSP stream from the EMS, you need to use a URI formatted as follows:

rtsp://[username[:password]@]IP[:port]/[ts|vod|vodts]/<LocalStreamN
ame or MP4 file name>

Some examples of RTSP requests are as follows:

Request a live RTSP/RTP stream

rtsp://192.168.1.5:5544/MyTestStream

Request a live RTSP/MPEG-TS stream

rtsp://192.168.1.5:5544/ts/MyTestStream

Request a VOD MP4 file via RTSP/RTP

rtsp://192.168.1.5:5544/vod/MyMP4File.mp4

Request a VOD MP4 file via RTSP/MPEG-TS

rtsp://192.168.1.5:5544/vodts/MyMP4File.mp4

For VOD requests, the file name can also include the path relative to the media folder:

rtsp://192.168.1.5:5544/vod/folderl/folder2/MyMP4File.mp4

Only MP4 files can be used for RTSP VOD playback. TS and FLV files cannot be used as sources at this
time.

The EMS can also PUSH streams towards another server or some other destination. The pushStream
Runtime-API function is used to do this. An example of the pushStream API is as follows:

pushStream uri=rtsp://192.168.1.5:554/1ive/
localStreamName=MyTestStream targetStreamName=PushedStreamName

Please see the API Definition document for more information on APl commands.

© 2013 EvoStream, Inc. All rights reserved. Page 40 of 78

MPEG Transport Stream (MPEG-TS)

The EMS fully supports MPEG2 Transport Stream over both UDP and TCP. UDP MPEG-TS streams can
be unicast, broadcast or multicast. In order to receive a UDP multicast stream, you must issue a
pullstream command using the dmpegtsudp:// protocol indicator (the “d” is for deep-parse):

pullstream uri=dmpegtsudp://229.0.0.1:5555
localstreamname=TestTSMulticast

TCP MPEG-TS streams can also be pulled by the server by using the above command, simply replacing
“udp” with “tcp”:

pullstream uri=dmpegtstcp://192.168.1.5:5555
localstreamname=TestTSMulticast

MPEG-TS TCP streams can also be pushed into the server, but you must first tell the EMS what ports to
listen to. You can do this by creating “acceptors” in the config/config.lua file:

{
ip="0.0.0.0",
port=9999,
protocol="inboundTcpTs"
}s
{
ip="0.0.0.0",
port=9999,
protocol="inboundUdpTs™
}s

The EMS will need to be restarted before any changes to the config.lua file will take effect.

© 2013 EvoStream, Inc. All rights reserved. Page 41 of 78

HTTP Live Streaming (HLS)

The EvoStream Media Server fully supports HLS, which allows you to send streams to iOS devices such
as iPhones and iPads. HLS is a file-based protocol. It functions by taking live streams and creating small
“video file chunks” that can be downloaded by iOS devices. Because HLS works this way it introduces
significant latency (with default settings around 60 seconds). There is unfortunately no way around
this.

To generate an HLS stream, you must use the createHLSStream APl command. This command has
many parameters that allow you to tweak how the HLS file chunks are generated. Please see the EMS
API Definition document for a thorough breakdown of all the command parameters.

The HLS files, once generated by the EMS, must be served via a standard HTTP server. If you are using
the EvoStream Amazon AMI, or have used one of the EvoStream Media Server installers you already
have the Apache web server installed and running. The targetFolder parameter should reflect the
web-root of your web server. When using Apache, the parameter should be as follows:

targetFolder=/var/www/

An example createHLSStream command is as follows:

createHLSStream localstreamnames=MyStream targetFolder=/var/www
groupName=hls playlisttype=rolling

To access this stream from an iOS device, you would use the following URL:

http://IPofEMS/hls/playlist.m3u8

Verimatrix DRM
The EMS supports Verimatrix DRM for HLS streams. To enable Verimatrix support for your HLS streams

you must enable and modify the “drm” section of the config.lu file. Please see the Configuration File
section below for details on the “drm” section.

Once Verimatrix support is enabled in the config file, you can then conditionally add Verimatrix
protection to your HLS streams. Simply add the following parameter:

drmType=verimatrix

The full command would then be:

createHLSStream localstreamnames=MyStream targetFolder=/var/www
groupName=hls playlisttype=rolling drmType=verimatrix

© 2013 EvoStream, Inc. All rights reserved. Page 42 of 78

AES Encryption
The EMS supports AES encryption for HLS streams. To use AES encryption you must specify two values

in the createHLSStream APl command:

Simply add the following parameter:

drmType=ems aesKeyCount=5

The full command would then be:

createHLSStream localstreamnames=MyStream targetFolder=/var/www
groupName=hls playlisttype=rolling drmType=ems aesKeyCount=5

drmType is a string value that specifies the type of encryption to use (“ems” means the EvoStream AES
encryption scheme).

AESKeyCount is an integer value (defaulted to 5), which specifies how many AES keys will be
generated, and rotated through, while encrypting the HLS Stream.

Automatic HLS
The EMS can be configured to automatically create an HLS stream for every new inbound stream. The

details for the HLS creation are placed in the config.lua file instead of as parameters to the
createHLSStream API call.

To enable Automatic HLS a section in the config.lua file needs to be enabled and modified.

Please see the Configuration Files section for details.

HTTP Dynamic Streaming (HDS)

The EvoStream Media Server fully supports HDS, which allows you to play streams with Adobe’s OSMF
based players. Just like HLS, HDS is a file-based protocol. It functions by taking live streams and
creating small “video file chunks” that are downloaded by OSMF players. Because HDS works in this
way it introduces significant latency (with default settings around 60 seconds). There is unfortunately
no way around this.

To generate an HDS stream, you must use the createHDSStream APl command. This command has
many parameters that allow you to tweak how the HDS file chunks are generated. Please see the EMS
API Definition document for a thorough breakdown of all the command parameters.

© 2013 EvoStream, Inc. All rights reserved. Page 43 of 78

The HDS files, once generated by the EMS, must be served via a standard HTTP server. If you are using
the EvoStream Amazon AMI, or have used one of the EvoStream Media Server installers you already
have the Apache web server installed and running. The targetFolder parameter should reflect the
web-root of your web server. When using Apache, the parameter should be as follows:

targetFolder=/var/www/

An example createHDSStream command is as follows:

createHDSStream localstreamnames=MyStream targetFolder=/var/www
groupName=hds playlisttype=rolling

To access this stream you would use the following URL:
http://IPofEMS/hds/manifest.f4m

Automatic HDS
The EMS can be configured to automatically create an HDS stream for every new inbound stream. The

details for the HDS creation are placed in the config.lua file instead of as parameters to the
createHDSStream API call.

To enable Automatic HDS a section in the config.lua file needs to be enabled and modified.

Please see the Configuration Files section for details.

Microsoft Smooth Streaming (MSS)

The EvoStream Media Server fully supports MSS, which allows you to play streams with Microsoft
Silverlight-based players. Just like HLS, MSS is a file-based protocol. It functions by taking live streams
and creating small “video file chunks” that are downloaded by Silverlight players.

To generate an MSS stream, you must use the createMSSStream APl command. This command has
many parameters that allow you to tweak how the MSS file chunks are generated. Please see the EMS
API Definition document for a thorough breakdown of all the command parameters.

The MSS files, once generated by the EMS, must be served via a standard HTTP server. If you are using
the EvoStream Amazon AMI, or have used one of the EvoStream Media Server installers you already
have the Apache web server installed and running. The targetFolder parameter should reflect the
web-root of your web server. When using Apache, the parameter should be as follows:

targetFolder=/var/www/

© 2013 EvoStream, Inc. All rights reserved. Page 44 of 78

An example createMSSStream command is as follows:

createMSSStream localstreamnames=MyStream targetFolder=/var/www
groupName=hls playlisttype=rolling

To access this stream from an iOS device, you would use the following URL:
http://IPofEMS/mss/manifest

Automatic MSS

The EMS can be configured to automatically create an MSS stream for every new inbound stream. The
details for the MSS creation are placed in the config.lua file instead of as parameters to the
createMSSStream API call.

To enable Automatic MSS a section in the config.lua file needs to be enabled and modified.

Please see the Configuration Files section for details.

© 2013 EvoStream, Inc. All rights reserved. Page 45 of 78

Raw RTP

The EMS can ingest raw, or unsolicited, RTP traffic. However, there are extra pieces of information
that the EMS will need in order properly process a raw RTP stream. Typically this information is
transferred out-of-band, either through (most commonly) RTSP, or through some other proprietary
channel. Since we are operating outside of the bounds of RTSP, the data will need to be added to the
pullStream command. The pullStream paramters isAudio, audioCodecBytes, spsBytes and ppsBytes
are used. Please see the API Description document for more details on these parameters.

pullstream uri=rtp://127.0.0.1:8888 localstreamname=rtptest
isAudio=1 audioCodecBytes=1190

pullstream uri=rtp://127.0.0.1:8888 localstreamname=rtptest
isAudio=0 spsBytes=ZOLAHpZiA2P8vCAAAAMAIAAABgHixck=
ppsBytes=aMuMsg==

Recording

The EMS provides a convenient way to record any inbound live stream. Simply issue a record api
command to record any local stream:

record localStreamName=Videol pathtofile=/recording/path type=mp4
overwrite=1

If you issue the record command for a stream that does not yet exist, the EMS will start recording the
stream once it is available.

Users can split a recording into multiple files (chunked recording) by using the “chunkLength”
parameter.

© 2013 EvoStream, Inc. All rights reserved. Page 46 of 78

Video on Demand (VOD)

The EMS can generate streams from MP4, FLV and MOV files. The specifics for doing this are described
in the previous sections relating to each which can be generated from these video on demand files.

The EMS supports VOD from the following file formats:

FLV — Adobe/Flash style files

MP4 - . mp4, .mpv, .mpg4, etc.

The EMS provides a robust mechanism for storing Audio and Video files on disk for VOD playback. You
may have your files in multiple locations, and those locations are permitted to be read-only for safety

reasons if you prefer. For each folder/location you must specify a mediaStorage section in the
config.lua file. Each mediaStorage section can have the following parameters:

Parameter

Mandatory

Default Val

Notes

mediaFolder

True

N/A

The full path to the folder you wish to use

description

False

oan

A description for your folder location

metaFolder

False

mediaFolder
location

The location where the EMS will create statistic, seek
and meta files for each of the VOD files. The EMS must
be able to write to this folder

enableStats

False

False

If true, the EMS will record statistics about each VOD file
played. The stats will be kept in a .stats file named the
same as the media file stored in the metaFolder and will
include the number of times accessed and they amount
of bytes served from it.

clientSideBuffer

False

15

The number of seconds the EMS will buffer content
when doing VOD playback for an RTMP client

keyFrameSeek

False

True

Seeking only occurs at key-frames if true. If false,
seeking may occur on inter-frame packets, which may
cause garbage to be shown on the client player until a
keyframe is reached

seekGranularity

False

.01

The fidelity, in seconds, of seeking for the files in this
mediaFolder.

© 2013 EvoStream, Inc. All rights reserved.

Page 47 of 78

An example of a configuration with two mediaStorage locations is as follows:

mediaStorage = {
recordedStreamsStorage="/my/folder/for/RTMP/recordings"”,
{
description="Default media location",
mediaFolder="../media",
}s
SecondStorage={
description="A read-only storage location",
mediaFolder="/var/myMedia",
metaFolder="../media",
enableStats=true,
clientSideBuffer=15,
keyframeSeek=true,
seekGranularity=0.1,

}

Please note that the default media location does not have a “node name”. All other mediaStorage
definitions do require a unique name. In the example, the name for the second media storage is
“SecondStorage”.

The recordedStreamsStorage parameter specifies a default location to place files when an RTMP
RECORD stream is pushed to the EMS.

To support the features of video on demand (VOD), the EMS will create extra files related to each video

file that is played. These files, called “seek” and “meta” files, provide quick indexing into each file and
allow the EMS to support the seeking and trick-play functionalities of both RTMP and RTSP. In addition,
and if statistics are enabled, the EMS will create *.stats files which record the usage statistics of each
VOD file. The locations where the EMS will write the seek, meta and stats files can be configured using
the mediaStorage configurations as defined above.

Pseudo-VOD

There may be times that you will want to generate a “live” stream out of a file.

There also may be a time where you need to create an MPEG-TS Stream (UDP
broadcast/unicast/multicast) out of a file.

This can be accomplished very simply. By performing an RTSP pullStream command on a VOD file (see
RTSP above), you create a new “live” inbound stream for the EMS. You can then either request that
stream via RTMP/RTSP, or perform a PushStream command to push it out as any of the other
protocols. If, for example, you have the mp4 file testFile.mp4, you can create a MPEG-TS UDP
Multicast stream from it using the following sequence:

pullstream uri=rtsp://localhost:5544/vod/testFile.mp4
localstreamname=TestMulticast

pushstream uri=mpegtsudp://229.0.0.1:5555
localstreamname=TestMulticast

© 2013 EvoStream, Inc. All rights reserved. Page 48 of 78

Capabilities

Lazy Pull - .vod Files
Lazy Pull is used to perform pullStream commands on demand. This feature allows you to conserve
your bandwidth by only pulling streams when they are actually requested by clients!

VOD Files are currently supported for RTMP and RTSP stream requests.

To use Lazy Pull, simply create .vod files within one of the configured EMS media folders. Clients can
then make requests on the .vod file just like it was a normal media file (such as mp4):

rtmp://127.0.0.1/vod/vod:myFile.vod

The construction of VOD files is very simple, it is merely the same parameters you would use in a
pullStream command placed on separate lines. An example VOD file is as follows:

uri=rtsp://192.168.1.5/myStream
forceTCP=true

The only two pullStream parameters which are NOT available within a VOD file are:

* localStreamName — The local name of the stream will always be the same as the .vod file being
used.

* keepAlive — Lazy Pull streams will only exist when one or more client has requested them.
Once all associated clients have disconnected the source stream is removed from the EMS to
continue conserving bandwidth.

VOD files can be generated on-the-fly manually or by any other process. The EMS will look for the
.vod file only when a client requests it.

© 2013 EvoStream, Inc. All rights reserved. Page 49 of 78

Server-Side Playlists

Playlist File

Playlist Files are simple text files which can be placed into one of the EvoStream Media Server’s
configured media directories (as defined in the config.lua file). Playlist Files allow users to specify a list
of streams, both live and recorded, which are played back in sequence upon a client request.

Playlist files MUST have the “.Ist” extension.

An example Playlist File is as follows:

sourceOffset, duration, localStreamName

0,-1,startingAd.mp4
-1,60,liveStreaml
0,-1,Ad2.mp4
-1,-1,1liveStreaml

The first line of the file (beginning with the comment delimiter ‘#’) is a comment describing the format
of each of the subsequent line. Each line after the first specifies a stream to play and can either be a
live stream or a VOD/media file. The EMS will start with the first item in the list for playback and will
move sequentially down the file. The localStreamName value specifies either a live stream or the path
(relative to one of the EMS media directories) of a media file. sourceOffset and duration specify what
part of the source stream to play and for how long. The values for sourceOffset and duration are
defined specifically as follows:

* sourceOffset specifies the starting position, in seconds, of the source stream. This parameter
can also be used to indicate whether the stream is live or recorded.

o -2 means that the EMS will look for a live stream with the localStreamName specified. If
a live stream is not found, it will attempt to play a media file with the localStreamName.
If a media file with that name and path cannot be found the EMS will wait for a live
stream to become available.

o -1implies that the localStreamName is explicitly a live stream. If no live stream is found,
the EMS waits indefinitely if duration is set to -1. If duration is another value the EMS
will wait duration seconds before moving to the next item in the playlist.

o 0 ora positive number implies that the specified localStreamName is a media file. The
EMS will start playback sourceOffset seconds from the beginning of the file. If no file is
found the playlist item is skipped.

o Any negative number other than -1 or -2 will be assumed to be -2

* Duration specifies the length of the playback of the stream in seconds.

© 2013 EvoStream, Inc. All rights reserved. Page 50 of 78

o -1 means that the EMS will play a live stream until it is no longer available or a media file
until its end.
0 means that only a single frame of the stream will be played.

o All positive numbers will cause the EMS to play the stream for duration seconds or until
the end of the media file or live stream, whichever comes first.

o Any negative number passed other than -1 will be assumed to be -1

Playlist Playback
Playing a playlist is very simple and can be done just like requesting a media file playback. From a flash

player, simply request a stream with a URI of:
rtmp://IPofEMS/vod/myPlaylist.Ist

You will of course need to use an appropriate domain name or IP for your EMS server and use the
name of your playlist file.

Playlists can only be directly played from Flash/RTMP clients. However, playlists can be used by other
types of clients/players via a simple redirect if needed. Simply issue a pullStream for the needed
playlist:

pullStream uri=rtmp://localhost/vod/myPlaylist.Ist localstreamnamex=livePlaylist

Users may then request the stream “livePlaylist” which will be the normal play-out of the playlist, but
can be accessed via any protocol supported by the EMS.

Playlist Manipulation
The EMS provides a simple mechanism for manipulating a playlist which is currently being viewed. The

insertPlaylistitem API funcation allows users to insert live streams and video files into the playlist.
These new items are added with a specific start time. When that start time is “now” the source of the
stream will be immediately be switched to the new playlist item. This leads to an entire collection of
uses:

* Manual Ad Insertion

* Source/View switching (think player 1 view switching to player 2’s view)
* Adding a fallback stream for a defunct source.

* Onthe fly channel programming

An important thing to note about the insertPlaylistitem command: the playlist file will NOT be
modified by this function, only the “in-memory” representation of the file. When all viewers of the
playlist disconnect, the temporary copy will be deleted and all changes will be lost.

© 2013 EvoStream, Inc. All rights reserved. Page 51 of 78

Transcoding

The EMS is packaged with a software encoder which provides a wide variety of additional functionality
to the EMS. EvoStream has chosen LibAV’s AVConv encoder to distribute, unmodified, along with the
EMS. Source code for AVConv can be found at http://libav.org/download.html. EvoStream complies
fully with the GPL in relation to the distribution of AVConv.

The EMS can be easily configured to use ANY software encoder. If a different software encoder is
desired, the integration requires only a change to a script, something that can be done on-demand.

Transcoding is an inherently complicated process, given the huge variety of options available for
compressing audio and video. The EMS provides a simple Transcode API which makes the entire
process very easy.

Changing Stream Bitrates
A common use case for transcoding involves the “transrating”(down-scaling) of an HD stream into

lower bitrates to support Adaptive Streaming protocols and smaller clients like Android and iOS
devices.

The simplest way to accomplish this is to bring the original HD stream into the EMS. You can then issue
a command similar to the following to create multiple streams with lower bitrates:

transcode source=Sourcel groupName=groupl videoBitrates=100k, 200k, 300k
destinations=streaml09, stream200,stream300

This command takes the “Sourcel” stream and creates 3 new streams within the EMS. Stream100 has
a bitrate of 100kbps, stream200 has a bitrate of 200kbps and stream300 has a bitrate of 300kbps.

You can then take each of those final streams and access them directly (IE: via RTMP or RTSP), or you
can create an HLS group out of them to create an adaptive bitrate stream for iOS devices:

createhlsstream localstreamnames=streaml100, stream200, stream300
targetfolder=/mywebroot/hls groupname=MyGroup playlisttype=rolling

To playback this group of adaptive streams, you simply need to direct your HLS player to:

http://YourServer/hls/MyGroup/playlist. m3u8

© 2013 EvoStream, Inc. All rights reserved. Page 52 of 78

Using Different Codecs

The EMS requires streams to be of type H.264/AAC, but that may not be the format your stream
source is in. The EMS Transcoder can be used to convert your source stream into H.264/AAC:

transcode source=rtsp://IpOfStreamSource:554/StreamName groupName=groupl
videoBitrates=5000k audioBitrates=800k destinations=StreamName

This command pulls the source stream from its RTSP source directly, transcodes it, and passes it to the
EMS as “StreamName”. The videoBitrates parameter MUST be specified when transcoding the video
codec. The audioBitrates parameter MUST be specified when transcoding the audio codec. If either
the audio or video does not need to be transcoded, that parameter may be skipped. Here | assume
that the source stream has a video bitrate of around 5Mbps and audio bitrate of around 800kbps.

Video Overlays - Watermarking

The EMS Transcoder may be used to generate overlays on top of your videos. PNG or JPEG images
with alpha layers (transparency) should be used. The image must be at the same or smaller resolution
(height and width) of the video you are overlaying. The overlay file will be placed at the top-left
corner of the video. To create the overlay, simply issue the following command:

transcode source=SourceStream groupName=groupl
overlays=/path/to/overlay.png destinations=0verlayedStream

Croppin

In some cases, you may want to crop a video and focus on just a portion of the video. The EMS
Transcoder supports video cropping.

transcode source=SourceStream groupName=groupl croppings=0:0:50:50
destinations=CroppedStream

This creates a resultant stream contain only a square 50px by 50px from the top right corner of the
video. The format for the croppings parameter horizontalPosition:verticalPosition: width:height where
horizontalPosition=0 at leftmost pixel, verticalPosition=0 at uppermost pixel.

© 2013 EvoStream, Inc. All rights reserved. Page 53 of 78

EMS Web Services

The EMS Web Services provide a suite of RESTful web services that leverage the EMS Run-Time APl and
EMS Event Notification system to extend and enhance the EvoStream Media Server. The EMS Web
Services can be used in production and/or built from to fit specific needs and requirements. These
web services are offered as a separate download from the EvoStream website: www.evostream.com

EvoStream Currently provides the following web services:

* Stream Recorder: Tells the EMS to automatically record any stream that has a particular,
customizable, naming convention.

* Load Balancer: Provides a mechanism for maintaining all source streams on multiple
EMS instances. This allows for automatic redundancy and/or provides multiple source servers
to pull from.

e Auto Router: Automatically forward source streams with a particular, customizable,

naming convention to another server. Destination server can be another EMS, a popular CDN,
or any other streaming server.

* HLS/HDS Amazon Upload: Automatically upload HLS and HDS streams to your Amazon S3
buckets for easy and massive distribution.

EMS User Interface

EvoStream provides a web-based user interface for interacting with the EMS. This web Ul is offered as
a separate download from the EvoStream website: www.evostream.com/downloads

WYOLH Media. Delivered Anywhere.

The EvoStream Media Server (EMS) allows you to distribute video to any type of screen
you wish to reach. Enter the IP address of your EMS server below to get started. Tell the
EMS to go get a new video stream by using the “Add an inbound stream” command.

Enter IP address of EMS: 192.168.1.78 & Connect...

« Server connected.

Server Commands

- Choose — v

Stream List
1D Name URI Type

No stream available...

© 2013 EvoStream, Inc. All rights reserved. Page 54 of 78

Configuration Files

Primary Config (config.lua)
The config.lua file is a hierarchical data structure of assignments (key names with values). It is sent as a
parameter when running the EvoStream server. The format is as follows:

<keyname>= <value>

where <value> could be any of the following types:

string = series of alpha numeric characters enclosed in double quotes
number = digits (without double quotes around it)

array = list of values separated by comma and is grouped by braces {}

Example:
aliases = {“flvplaybackl”, “vodl”, “live”}

object = list of assignments enclosed by braces {}

Example:

configurations =

{
daemon = “true”,
pathSeparator = “/”,
logAppenders = {...},
applications = {...}

}

In the example above, configurations has a value of type object. An object is a group of data inside
braces {} which may contains several assighments (<keynames> = <values>) separated by comma (,)
and in turn could be another object. The assignments in the example above are daemon,
pathSeparator, logAppenders, applications. Notice that the values of logAppenders and applications
could be another object or array recursively.

© 2013 EvoStream, Inc. All rights reserved. Page 55 of 78

Contents of the Configuration file

configuration — This is the entire structure for all configuration needed by the EMS Server.

configuration =

{

daemon = false,
pathSeparator = “/>,

logAppenders =
{
-- content removed for clarity
}s
applications =
{
-- content removed for clarity
}
}
Configuration Structure
Key Type | Mandatory Description
daemon boolean yes true means the server will start in daemon mode. false means it
will start in console mode (nice for development).
pathSeparator |string(1) yes This value will be used by the server to compose paths (like media
files paths). Examples: on UNIX-like systems this is / while on
windows is \. Special care must be taken when you specify this value
on windows because \ is an escape sequence for Lua so the value
should be “\\”.
logAppenders object yes Will hold a collection of log appenders. Each log message will be sent
to each of the log appenders enumerated in this configuration
section.
eventlLogger object No Settings for the server-wide event sinks
applications object yes Will hold a collection of loaded applications. Besides that, it will also
hold few other values.
The number of virtual instances of EMS server where load balancing
. will be performed. If this item is missing, it will be replaced by 0,
instancesCount | number yes . . S . . -
disabling multiple instances. If its value is -1, it will be replaced by
the number of CPUs, enabling one or more additional instances.
clientSideBuffer | Number No The number of seconds that the EMS will buffer when behaving as an
RTMP client.
The maximum amount of bytes the EMS will store in the output
maxRtmpOutBuffer Number No RTMP buffer
maxRTSPOUtBUffer | Number No The maximum amount of bytes the EMS will store in the output RTSP

© 2013 EvoStream, Inc. All rights reserved.

buffer. Only used for RTSP when the final transport is RTP over TCP

Page 56 of 78

When the server starts, the following sequence of operations is performed:
1. The configuration file is loaded. Part of the loading process, is the verification. If something is wrong

with the syntax please try this:
For Linux:
/usr/bin/evostreamms —use-implicit-console-appender /etc/evostreamms/config.lua

For Linux Archive:
cd EMS_INSTALL _DIRECTORY
.Jevostreamms --use-implicit-console-appender ../config/config.lua

For Windows:
cd EMS_INSTALL_DIRECTORY
evostreamms --use-implicit-console-appender config\config.lua

Note: EMS_INSTALL_DIRECTORY is the ./bin/ directory within the EvoStream Media Server
Archive/Zip directory.

2. The "daemon" value is read. The server now will either fork to become daemon or continue as is in
console mode.

3. The "logAppenders" value is read. This is where all log appenders are configured and brought up to
running state. Depending on the collection of your log appenders, you may (not) see further log
messages.

4. The "applications" value is taken into consideration. Up until now, the server doesn't do much. After
this stage completes, all the applications are fully functional and the server is online and ready to do
stuff.

© 2013 EvoStream, Inc. All rights reserved. Page 57 of 78

logAppenders

This section contains a list of log appenders. The entire collection of appenders listed in this section is
loaded inside the logger at config-time. All log messages will be than passed to all these log appenders.
Depending on the log level, an appender may (or may not) log the message. “Logging” a message

means “saving” it on the specified “media” (in the example below we have a console appender and a
file).

logAppenders

name="console appender",
"coloredConsole",
level

name="file appender",

"file",
level=6,
fileName="../logs/evostream",

logAppenders Structure

Key Type | Mandatory Description
name string yes The name of the appender. It is usually used inside pretty print
routines.
type string yes The type of the appender. It can be "console", "coloredConsole"

or "file". Types "console" and "coloredConsole" will output to the
console. The difference between them is that "coloredConsole" will
also apply a color to the message, depending on the log level.
Quite useful when eye-balling the console. Type "file" log appender
will output everything to the specified file.

level number yes The log level used. The values are presented just below. Any
message having a log level less or equal to this value will be logged.
The rest are discarded. Example: setting level to 0, will only log
FATAL errors. Setting it to 3, will only log FATAL, ERROR, WARNING
and INFO. Set log level to -1 to disable all logging.

fileName string yes If the type of appender is a file, this will contain the path of the file.
newlineCharacters | string no Newline character used in the file appender.
fileHistorySize number no The maximum number of log files to be retained. The oldest log file
will be deleted first if this number is exceeded.
fileLength number no Buffer size of the file appender.
singleLine boolean no If yes, multi-line log messages are merged into one line.

© 2013 EvoStream, Inc. All rights reserved. Page 58 of 78

Log Levels
Value Name
0 FATAL
ERROR
WARNING
INFO
DEBUG
FINE
FINEST

A bk~ W N

Observation: When daemon mode is set to true, all console appenders will be ignored. (Read the
explanation for daemon setting above).

applications

This section is where all the applications inside the server are placed. It holds the attributes of each
application that the server will use to launch them. Each application may have specific attributes that it
requires to execute its own functionality.

applications

rootDirectory = "./",

-- settings for application 1
-- content removed for clarity

-- settings for application 2
-- content removed for clarity

-- settings for application 3
-- content removed for clarity

© 2013 EvoStream, Inc. All rights reserved. Page 59 of 78

Applications Structure
Key Type |Mandatory Description

rootDirectory | string true The folder containing applications subfolders. If this path begins with
a"/"or"\" (depending on the OS), then is treated as an absolute path.
Otherwise is treated as a path relative to the run-time directory (the place
where you started the server).

Following the rootDirectory, there is a collection of applications. Each application has its properties

contained in an object. See details below.

© 2013 EvoStream, Inc. All rights reserved. Page 60 of 78

Application Definition
This is where the settings of an application are defined. We will present only the settings common to
all applications. Later on, we will also explain the settings particular to certain applications.

e e !
X e
' name = "flvplayback",

| protocol = "dynamiclinklibrary",

i description = "FLV Playback Sample", |
E default = false, E
: validateHandshake = true,

: aliases = !
: { :
! "simpleLive",

! "vod", !
! "live", !
! "chat", !
: Fs :
: mediaStorage =

: { :
: { :
! -- storage 1 !
! -- content removed for clarity !
: T :
I { :
! -- storage n !
! -- content removed for clarity !
: g :
: 3 :
: acceptors = |
e { e
| { :
1 - acceptor‘ 1 1
: -- content removed for clarity :
e 2 e
: { |
' -- acceptor n |
E -- content removed for clarity E
: ' :
: ' :
: authentication =

1 { 1
E -- content removed for clarity

: }s :
! eventLoggers= !
: { :
! -- content removed for clarity

: } :
i |
L i

2013 EvoStream, Inc. All rights reserved. Page 61 of 78

Key Type

name string

protocol string

description string
default boolean

pushPullPersistenceFile string

authPersistenceFile string

connectionsLimitPersistenceFile| string

streamsExpireTimer number
rtcpDetectioninterval number
aliases object
acceptors object
validateHandshake boolean
authentication object
eventlLogger Object

© 2013 EvoStream, Inc. All rights reserved.

Application Structure

Mandatory
yes

yes

no

no

no

no

no

no

no

no

no

no

no

no

Description
Name of application.

Type of application. The value dynamiclinklibrary
means that the application is a shared library.

Describes the application.

This flag designates the default application. The default
application is responsible in analyzing the connect request
and distribute the future connection to the correct
application.

The path to XML file generated when a stream is created.
This file is also used when reconnecting to the stream
after restarting the EMS server.

The path to an XML file that contains a boolean which
turns authentication on or off.

The path to an XML file that contains the maximum
number of connections allowed. If the number contained
is zero, the number of connections is unlimited.

The duration (in seconds) for keepAlive. The default value
is 30 seconds.

How much time (in seconds) the server waits for RTCP
packets before declaring an RTSP stream as an RTCP-less
stream. The default value is 10 seconds.

The application will also be known by this name. Any
name in the aliases array can be used to access a stream.

Acceptors hold the service that will be hosted at the
server. An application can have its own acceptor, but this
is optional.

Tells the server to validate the client's handshake before
going further. This is optional with a default value of true.
If this is true and the handshake fails, the connection is
dropped. If this is false, handshake validation will not be
enforced and all the connections are accepted no matter if
they are correctly handshaking or not.

The path to the configuration file for user account
authentication (users.lua) when accepting streams from
encoder agents (such as FMLE or Wirecast).

Settings for the event notifications at the application level

Page 62 of 78

acceptors

The “acceptors” block is found within the “applications” section named “evostreamms” in the
configuration file. Each acceptor protocol used by applications is defined here. Some protocols may

require additional parameters.
Key Type Mandatory
ip string yes
port string yes
protocol string yes

The following acceptor types are supported by EMS:

Acceptor Protocol

inboundRtmp
inboundRtmps

inboundRtmpt
inboundTcpTs
inboundUdpTs
inboundRtsp
inboundLiveFlv
inboundBinVariant
inboundJsonCli

inboundHttpJsonCli

Typical IP | Typical Port

0.0.0.0

0.0.0.0

0.0.0.0
0.0.0.0
0.0.0.0
0.0.0.0
0.0.0.0
127.0.0.1
127.0.0.1
0.0.0.0

1935

8081

8080
9999
9999
5544
6666
1113
1112
7777

Acceptor Structure

Description

The IP where the service is located. 0.0.0.0 means all interfaces and

all IPs.

Port number that the service will listen to.

The protocol stack handled by the ip:port combination.

sslKey (path to SSL key file),
sslCert (path to SSL certificate file)

waitForMetadata (boolean)

useLengthPadding (boolean)

Additional Parameters (Note)

clustering (boolean)

Protocol Stack (Tags)
TCP+IR

TCP+ISSL+IRS

TCP+IH4R
TCP+ITS
UDP+ITS

TCP+RTSP
TCP+ILFL

TCP+BVAR
TCP+IJSONCLI
TCP+IHTT+H4C+IJSONCLI

Protocol Group Tag Protocol Type
Carrier Protocols TCP TCP
UDP UDP
Variant Protocols BVAR Bin Variant
XVAR XML Variant
JVAR JSON Variant
RTMP Protocols IR Inbound RTMP
IRS Inbound RTMPS
OR Outbound RTMP

© 2013 EvoStream, Inc. All

rights reserved.

Page 63 of 78

RS

RTMP Dissector

Encryption Protocols RE RTMPE
ISSL Inbound SSL
OSSL Outbound SSL
MPEG-TS Protocol ITS Inbound TS
HTTP Protocols IHTT Inbound HTTP
IHTT2 Inbound HTTP2
IH4R Inbound HTTP for RTMP
OHTT Outbound HTTP
OHTT2 Outbound HTTP2
OH4R Outbound HTTP for RTMP
CLI Protocols [JSONCLI | Inbound JSON CLI
H4C HTTP for CLI
RPC Protocols IRPC Inbound RPC
ORPC Outbound RPC
Passthrough Protocol PT Passthrough

Example:

Applications =

{

acceptors

© 2013 EvoStream, Inc. All rights reserved.

Page 64 of 78

clustering=true,

}s

{
ip="127.0.0.1",
port=1113,
protocol="inboundBinVariant",
clustering=true,

}s

-- RTSP

{
ip="0.0.0.0",
port=5544,
protocol="inboundRtsp",
--[[
multicast=
{

ip="224.2.1.39",
ttl=127,

}s
11--

}s

-- LiveFLV ingest

{
ip="0.0.0.0",
port=6666,
protocol="inboundLiveF1lv",
waitForMetadata=true,

}s

-- HTTP

{
ip="0.0.0.0",
port=8080,
protocol="inboundHttp",

}s

--RTMPS

--[I[

{
ip="0.0.0.0",
port=4443,
protocol="inboundRtmp",
sslKey="/path/to/some/key",
sslCert="/path/to/some/cert",

}s

11--

b

2013 EvoStream, Inc. All rights reserved. Page 65 of 78

autoHLS

Within the “evostreamms” application section of the config.lua file, you will need to uncomment out

the autoHLS group. (To uncomment it remove the “--[[“ and “]]--“ strings).

The autoHLS configuration group defines the parameter settings that will be used when the

createHLSStream is automatically called on stream creation. Since targetFolder is the only mandatory
field in createHLSStream, that value MUST be specified in the autoHLS section. All other parameters

can be specified if you want to override the default values.

An example configuration section is as follows:

autoHLS=

{
targetFolder="../media”,
groupName="autohls",
playlisttype="rolling”,
playlistLength=10,
chunkLength=10,

© 2013 EvoStream, Inc. All rights reserved.

Page 66 of 78

autoHDS

Within the “evostreamms” application section of the config.lua file, you will need to uncomment out
the autoHDS group. (To uncomment it remove the “--[[“ and “]]--“ strings)

The autoHDS configuration group defines the parameter settings that will be used when the
createHDSStream is automatically called on stream creation. Since targetFolder is the only mandatory
field in createHDSStream, that value MUST be specified in the autoHDS section. All other parameters
can be specified if you want to override the default values.

An example configuration section is as follows:

autoHDS=

{
targetFolder="../media”,
groupName="autohds",
playlisttype="rolling”,
playlistLength=10,
chunkLength=10,

autoMsSS

Within the “evostreamms” application section of the config.lua file, you will need to uncomment out
the autoMSS group. (To uncomment it remove the “--[[“ and “]]--“ strings)

The autoMSS configuration group defines the parameter settings that will be used when the
createMSSStream is automatically called on stream creation. Since targetFolder is the only mandatory
field in createMSSStream, that value MUST be specified in the autoMSS section. All other parameters
can be specified if you want to override the default values.

An example configuration section is as follows:

AutoMSS=

{
targetFolder="../media”,
groupName="automss",
playlisttype="rolling”,
playlistLength=10,
chunkLength=10,

© 2013 EvoStream, Inc. All rights reserved. Page 67 of 78

mediaStorage

The “mediaStorage” block is found within the “applications” section named “evostreamms” in the

configuration file. A “recordedStreamsStorage” section is defined under “mediaStorage” for

applications requiring recording on-the-fly. The section may be left nameless for applications that do

not require recording on-the-fly.

Media Storage Structure

Parameter Mandatory | Default Value | Notes

mediaFolder true N/A The full path to the folder you wish to use

description false “ A description for your folder location

metaFolder false mediaFolder The location where the EMS will create statistic, seek and

location meta files for each of the VOD files. The EMS must be able to

write to this folder

enableStats false false If true, the EMS will record statistics about each VOD file
played. The stats will be kept in a .stats file named the same
as the media file stored in the metaFolder and will include the
number of times accessed and they amount of bytes served
from it.

clientSideBuffer | false 15 The number of seconds the EMS will buffer content when
doing VOD playback for an RTMP client

keyFrameSeek false true Seeking only occurs at key-frames if true. If false, seeking
may occur on inter-frame packets, which may cause garbage
to be shown on the client player until a keyframe is reached

seekGranularity | false .01 The fidelity, in seconds, of seeking for the files in this
mediaFolder.

Example:

applications

mediaStorage = {
recordedStreamsStorage={

description="default media storage",
mediaFolder="/some/media/folder",
metaFolder="/fast/discardable/separate/folder",
enableStats=false,

clientSideBuffer=15,

keyframeSeek=true,

seekGranularity=0.1,
externalSeekGenerator=false,

}s

© 2013 EvoStream, Inc. All rights reserved.

Page 68 of 78

authentication

The “authentication” block is found within the “applications” section named “evostreamms” in the

configuration file. Authentication settings for RTMP and RTSP protocols are defined separately. For

RTMP, another file, “auth.xml”, is required to enable authentication. In addition, a users file, typically

named “users.lua”, provides the user names and passwords.

Authentication Structure

Protocol | Parameter Mandatory Typical Setting

rtmp type true “adobe”
encoderAgents true “FMLE...” (see below)
usersFile true “../config/users.lua”

rtsp usersFile true “../config/users.lua”
authenticatePlay false true (default value is false)

Example:

applications

authentication

rtmp=
{

¥
rtsp=

= {

type="adobe",

encoderAgents=

{
"FMLE/3.0 (compatible; FMSc/1.0)",
"Wirecast/FM 1.0 (compatible; FMSc/1.0)",
"EvoStream Media Server (www.evostream.com)"

3

usersFile="../config/users.lua”

usersFile="../config/users.lua”,
--authenticatePlay=false,

Note: Authentication is disabled if the “authentication” block in the “config.lua” file is missing or

incomplete. For RTMP protocol, authentication is disabled if the “auth.xm

I”

file is missing or contains a

“false” setting. For RTSP protocol, authentication is disabled if “authenticatePlay” in the “rtsp” block is

omitted or set to “false”.

© 2013 EvoStream, Inc. All rights reserved.

Page 69 of 78

eventLogger

To enable Event Notifications you will need to enable/uncomment the eventLogger section of the
config.lua file. Comments in LUA are specified by either a “--“ for a single line, or denoted by a “--[[“ to
start a comment block and a “]]--“ to end a comment block. By default the eventLogger section is
commented out using the block style comments, so you will need to remove both the --[[and]]--
strings.

The configuration entry must be constructed as follows:

eventLogger=
{
sinks=
{
{
type="sinkl_type",
-- propertyl of sinkl
-- property2 of sink1
s
{
type="sink2_type",
-- propertyl of sink2
-- property2 of sink2
enabledEvents=
{
“inStreamCreated”,
“inStreamClosed”,
}
}s
--[[some more sinks]]--
}s
}

The enabledEvents parameter is optional and allows you to specify only the events which you wish to
receive. If the enabledEvents section is not specified, all events will be generated. All event types are
listed below

Stream Events

inStreamCreated A new inbound stream has been created

outStreamCreated A new outbound stream has been created

streamCreated A new neutral (neither in nor out) stream has been created

inStreamClosed An inbound stream has been closed

outStreamClosed An outbound stream has been closed

streamClosed A neutral stream has been closed

inStreamCodecsUpdated The audio and/or video codecs for this inbound stream have been identified or
changed

outStreamCodecsUpdated The audio and/or video codecs for this outbound stream have been identified

© 2013 EvoStream, Inc. All rights reserved. Page 70 of 78

or changed

streamCodecsUpdated

The audio and/or video codecs for this neutral stream have been identified or
changed

Adaptive Streaming/File-based Streaming Events

hisChildPlaylistUpdated

Stream specific HLS playlist has been modified

hlsMasterPlaylistUpdated

HLS group playlist has been modified

hlsChunkCreated

A new HLS segment was opened on disk

hlsChunkClosed

A new HLS segment has been completed and is ready on disk

hlsChunkError

A failure occurred when writing to an HLS segment file

hdsChildPlaylistUpdated

Stream specific HDS manifest has been modified

hdsMasterPlaylistUpdated

HDS group manifest has been modified

hdsChunkCreated A new HDS segment file has been opened

hdsChunkClosed A new HDS segment has been completed and is ready on disk
hdsChunkError A failure occurred when writing to an HDS segment/fragment file
mssChunkCreated A new MSS fragment file has been opened

mssChunkClosed A new MSS fragment has been completed and is ready on disk
mssChunkError A failure occurred when writing to an MSS fragment file

mssPlaylistUpdated

MSS manifest has been modified

APl Based Events

cliRequest The EMS has received a Runtime APl command

cliResponse The response generated by the EMS for the last Runtime APl command
processStarted A process has been started at the request of the launchProcess APl command
processStopped A process started via the launchProcess APl command has been stopped

timerCreated

A new timer has been created via the setTimer APl command

timerTriggered

The requested timer event

timerClosed

Indicates the timer is no longer valid and will not create any futher
timerTriggered events

Connection Based Events

protocolRegisteredToApp

A connection has been fully established

protocolUnregisteredFromApp

A connection has been disconnected

carrierCreated

Some 10 handler, such as a TCP socket, has been created. This is not
analogous to a connection creation.

carrierClosed

Some |0 handler, such as a UDP socket, has been closed. This is not analogous
to a connection being closed.

Application Based Events

applicationStart

The internal EMS application has started

applicationStop

The internal EMS application has stopped, likely indicating a shutdown is
about to occur

serverStarted

The EMS has fully started

serverStopping

The EMS is about to shutdown. This is sent as late as possible, but clearly not
after shutdown has been completed

© 2013 EvoStream, Inc. All rights reserved.

Page 71 of 78

There are two main types of event sinks:

1) File —event details are written to a log file located relative to the current directory. The log file is
overwritten each time the EMS starts up.

File sink configuration:

type="file",
filename="1log.txt",
format="text",
customData="my custom data”

The format can be one of the following types:
a) “text” (plain text)
b) lleIII

c) “json”

2) RPC - Remote Procedure Calls. Event details are transmitted to a remote host via HTTP POST. The
EMS will ignore any response from the remote host.

RPC sink configuration:

type="RPC",
url="http://192.168.1.5:5555/something/service",
serializerType="JSON",

customData="my custom data”

The url field specifies the destination which will be accepting the HTTP POST event notifications..

The serializer type can be one of the following formats:

1) “JSON”
Format of JSON POST:
{"payload":{"creationTimestamp":1349335053486.4370, "name":"", "query

Timestamp":1349335053487.4370, "type":"NR","uniqueId":1, "upTime":1.0
000}, "type":"streamCreated"}

2) IIXM LII

© 2013 EvoStream, Inc. All rights reserved. Page 72 of 78

Format of XML POST:

<?xml version="1.0" ?>
<MAP isArray="false" name="">
<MAP isArray="false" name="payload">
<DOUBLE name="creationTimestamp">1349335287346.813</DOUBLE>
<STR name="name"></STR>
<DOUBLE name="queryTimestamp">1349335287346.813</DOUBLE>
<STR name="type">NR</STR>
<UINT64 name="uniqueId">1</UINT64>
<DOUBLE name="upTime">0.000</DOUBLE>
</MAP>
<STR name="type">streamCreated</STR>
</MAP>

3) XMLRPC
Format of XMLRPC POST (indented for clarity):

<?xml version="1.0"?>
<methodCall>
<methodName>event.Log</methodName>
<params>
<param>
<value>
<struct>
<member>
<name>payload</name>
<value>
<struct>
<member>
<name>creationTimestamp</name>
<value><double>0.000000</double></value>
</member>
<!-- contents removed for clarity -->
</struct>
</value>
</member>
<member>
<name>type</name>
<value><string>streamCreated</string></value>
</member>
</struct>
</value>
</param>
</params>
</methodCall>

© 2013 EvoStream, Inc. All rights reserved. Page 73 of 78

The customData parameter for both File and RPC Event Sinks can be optionally used to extra data to
each event for that sink. This could be used to identify the particular EMS instance which is generating
the event, return a particular ID or Key which is pertinent to your handling of the event, or anything

really! A customData parameter can be a simple sting value or a complex LUA object.

If a customData parameter is not specified for a node, the value of the parent eventLogger customData
node will be used. If that is also not specified, the value will be V_NULL.

transcoder

Within the application section you can find the configuration for the EvoStream Transcoder. The
default settings are generally going to be fine for all applications, but under certain circumstances they
may need to be adjusted. The transcoder section looks like the following:

applications

transcoder = {

scriptPath="./emsTranscoder.sh",
srcUriPrefix="rtsp://localhost:5544/",
dstUriPrefix="-f flv tcp://localhost:6666/"

}s

Key Type

scriptPath string

srcUriPrefix String

dstUriPrefix String

© 2013 EvoStream, Inc. All rights reserved.

Mandatory

yes

Yes

Yes

transcoder Structure
Description

The location for the helper script for the transcoder. The transcode
API function calls this script instead of calling the binary directly so
that the binary can be replaced should you want to use a custom
transcoder.

When using the transcode API function, you can specify just a
localStreamName as the source stream. This is the prefix that will
be pre-pended to the provided localStreamName when actually
pulling that source stream. For example, if
srcUriPrefix="rtsp://localhost:5544” and the stream name “test1” is
given to the transcode command, the following URI will be used:
rtsp://localhost:5544/test1

This is the converse of the srcUriPrefix, in that if just a
localStreamName is given as a destination in the transcode
command, this is the string that will be prepended to the stream
name. That complete command will then be used by the transcoder
to send the stream back to the EMS.

Page 74 of 78

drm
Also in the application section of the config.lua file, the DRM section provides the configuration values

for any DRM that needs to be activated. This section is commented out by default (wrapped in “--[[“

and “]]--“). It must be un-commented-out before DRM will be activated.

applications

drm={

}s

type="verimatrix",
requestTimer=1,
reserveKeys=10,
reservelds=10,

-- urlPrefix="http://serverl.evostreaml.com:12684/CAB/keyfile"
urlPrefix="http://vcas3multicasl.verimatrix.com:12684/CAB/keyfile"

Key

type

requestTimer

reserveKeys

reservelds

urlPrefix

Type

string

Number

Number

Number

Mandatory

yes

Yes, when
type=verimatrix

Yes, when
type=verimatrix

Yes, when
type=verimatrix

Yes, when
type=verimatrix

© 2013 EvoStream, Inc. All rights reserved.

drm Structure
Description

The type of DRM to be used. Options are:
1) “verimatrix” — Enables Verimatrix DRM on HLS
2) “evo” —Enables AES encryption on HLS
3) “none” —disables DRM. This is the same as commenting
out this section of the config file.

The key request timer period in seconds. Right after startup, the
EMS will request keys from the Verimatrix Key Server every
timer period.

Default=1, Min=1, Max=none. (If set below min, the min value
will be used.)

The number of keys buffered per ID.
Default=10, Min=5, Max=none. (If set below min, the min value
will be used.)

The number of reserve IDs with key buffers to be filled in
addition to active IDs.

Default=10, Min=5, Max=none. (If set below min, the min value
will be used.)

The location of your Verimatrix VCAS Key Server

Page 75 of 78

Authentication (users.lua)

This file contains user name and password to authenticate when accepting streams from encoder
agents such as Flash Media Live Encoder (FMLE) or Wirecast. The path to this file is set within the
“authentication” section of the config.lua configuration file

A typical users.lua file is shown below.

users=
{
userl="passwordl",
user2="password2",
}
realms=
{
{
name="EVOSTREAM stream router",
method="Digest",
users={
"userl”,
"user2",
s
}s
}
pushPullSetup.xml

This file is used when reconnecting to the stream after restarting the EMS server and is automatically
updated when a stream is created or deleted. If the file does not exist (or when it’s deleted), it will be
generated automatically by EMS.

connLimits.xml
This file sets the allowed maximum number of connections to EMS.

© 2013 EvoStream, Inc. All rights reserved. Page 76 of 78

Interoperability

Stream Sources

Flash Media Live Encoder (FMLE) — RTSP, RTMP, MPEG-TS

Flash Media Server (FMS) — RTSP, RTMP, MPEG-TS

Discover Video Multimedia Encoder (DVME) — RTSP, RTMP, MPEG-TS
VLC — RTSP, RTMP, Mpeg-TS

Wowza — RTSP, RTMP, Mpeg-TS

FFMpeg — MPEG-TS, RTSP

BRIA SIP Server — RTSP

IPCamera — RTSP

Wirecast - RTMP

Stream Players

RTMP (Flash) — Adobe Flash Player, JW Player, ffPlay, Flowplayer
RTSP — Android phones (v2.3.5 or later), VLC, QuickTime, ffPlay
HLS — All iOS devices, iPhone, iPad, iPod Touch

MPEG-TS — VLC, ffPlay

Akamai

Akamai requires very specific settings when pushing a stream to your account. The pushStream
command for pushing to Akamai must look like the following:

pushStream
uri=rtmp://AkamaiUserName:AkamaiPass@YOUR.akamaientrypoint.net/EntryPoint
localStreamname=YourLocalStream targetStreamName=XX_YY_ZZ@WW
emulateUserAgent=FMLE/3.0\ (compatible;\ FMSc/1.0)

AkamaiuserName, AkamaiPass, YOUR.akamaientrypoint.net all must be the values assigned to you by
Akamai.

For the targetStreamName, xx, yy, zz are arbitrary strings, but Akamai requires there to be exactly two

oo

in the stream name. @ww is a unique number used in combination with username/password to

allow/disallow the publish operation. It is mandatory and is provided to you by Akamai.

© 2013 EvoStream, Inc. All rights reserved. Page 77 of 78

Other CDNs

The EMS allows you to publish your streams to a wide variety of CDNs. These include:

* UStream
* Justin.tv
* Wink Streaming
* EdgeCast
* And many more!

Often times pushing streams to these CDNs is very simple and only requires you to add your username
and password to the RTMP pushStream command (See RTMP section above). For many of these CDNs,
you will need to specify emulateUserAgent in your pushStream command. An example pushStream
command is as follows:

pushStream uri=rtmp://UserName:Pass@EntryPoint
localStreamname=YourLocalStream
targetStreamName=UsuallySpecifiedInYourAccount emulateUserAgent=FMLE

Miscellaneous Examples
To play an mpegts stream in VLC, use: udp://@239.1.1.1:1234

To create a stream out of a file with ffmpeg, use: ffmpeg -re -i myMovie.mp4 -acodec copy -
vcodec copy -f mpegts -vbsf h264_mp4toannexb "udp://192.168.1.16:5555/"

To play HLS, send telnet command to EMS:

1. createhlsstream localstreamnames=teststream targetfolder=/var/www
groupname=testgroup playlisttype=rolling

2. Verification: check if .ts files are generated inside targetfolder.
In the browser, type the complete URI of the “targetfolder/groupname” where playlist.m3u8 is
located.

PLEASE SEE THE “HOW TO” DOCUMENT FOR MORE EXCELLENT EXAMPLES!

© 2013 EvoStream, Inc. All rights reserved. Page 78 of 78

