

EvoStream Media Server
How To

© 2011 Evostream, Inc. All rights reserved. Page 2 of 17

Table of Contents

PURPOSE .. 3

USING THE API ... 3

ASCII .. 3
HTTP .. 4

PHP and JavaScript ... 5
JSON .. 5

DOCUMENT DEFINITIONS.. 6

RECOMMENDED PLAYERS ... 7

ADD LIVE STREAMS TO THE EVOSTREAM MEDIA SERVER ... 7

PULL STREAM .. 7
RTMP – Flash .. 7
RTSP.. 7
RTP - UDP ... 7
MPEG-TS ... 8

PUSH-IN .. 8
Push-In Authentication ... 8

PLAYING/RETRIEVING LIVE STREAMS ... 9

RTMP ... 9
RTSP .. 9
MPEG-TS ... 10
HTTP LIVE STREAMING ... 10
HTTP DYNAMIC STREAMING .. 11

VIDEO ON DEMAND .. 12

RTMP .. 12
RTSP WITH RTP OR MPEG-TS ... 13
HLS VOD WORK AROUND .. 14

RECORDING STREAMS .. 15

STOPPING STREAMS .. 15

STOPPING A RECORDING ... 16

TRANSCODING ... 17

© 2011 Evostream, Inc. All rights reserved. Page 3 of 17

Purpose

This document is intended for Engineers and System Integrators. It provides descriptions of

common EvoStream Media Server functionality as well as example commands to achieve that

functionality. It augments the EvoStream Media Server (EMS) API Definition document. If you are

not familiar with the EMS API, please first review the API Definition before proceeding with this

How To.

The sample commands provided in this document refer to API calls that can be made to either the

ASCII (telnet) or the HTTP interfaces. These example commands can be copied and modified to

meet your projects needs. Please see the EMS API Definition document for instructions on using

the ASCII or HTTP interfaces, further descriptions of these commands and for optional function

parameters not used in these examples.

Using the API
The EvoStream Media Server (EMS) API can be accessed in two ways. The first is through an ASCII

telnet interface. The second is by using HTTP requests. The API is identical for both methods of

access.

The API functions parameters are NOT case sensitive.

ASCII
The ASCII interface is often the first interface used by users. It can be accessed easily through the

telnet application (available on all operating systems) or through common scripting languages.

To access the API via the telnet interface, a telnet application will need to be launched on the same

computer that the EMS is running on. The command to open telnet from a command prompt

should look something like the following:

If you are on Windows 7 you may need to enable telnet. To do this, go to the Control Panel ->

Programs -> Turn Windows Features on and off. Turn the telnet program on.

telnet localhost 1112

© 2011 Evostream, Inc. All rights reserved. Page 4 of 17

Please also note that on Windows, the default telnet behavior will need to be changed. You will

need to turn local echo and new line mode on for proper behavior. Once you have entered telnet,

exit the telnet session by typing “ctrl+]”. Then enter the following commands:

Press Enter/Return again to return to the Windows telnet session.

Once the telnet session is established, you can type out commands that will be immediately

executed on the server.

An example of a command request/response from a telnet session would be the following:

Request:

Response:

HTTP
To access the API via the HTTP interface, you simply need to make an HTTP request on the server

with the command you wish to execute. By default, the port used for these HTTP requests is

7777. The HTTP interface port can be changed in the main configuration file used by the EMS

(typically config.lua).

All of the API functions are available via HTTP, but the request must be formatted slightly

differently. To make an API call over HTTP, you must use the following general format:

set localecho

set crlf

version

{"data":"1.5","description":"Version","status":"SUCCESS"

}

http://IP:7777/functionName?params=base64(firstParam=XXX

secondParam=YYY …)

© 2011 Evostream, Inc. All rights reserved. Page 5 of 17

In example, to call pullStream on an EMS running locally you would first need to base64 encode

your parameters:

PHP and JavaScript

PHP and JavaScript functions are also provided. These functions simply wrap the HTTP interface

calls. They can be found in the web_ui directory.

JSON

The EMS API provides return responses from most of the API functions. These responses are

formatted in JSON so that they can be easily parsed and used by third party systems and

applications. These responses will be identical, regardless of whether you are using the ASCII or

HTTP interface.

When using the ASCII interface, it may be necessary to use a JSON interpreter so that responses

can be more human-readable. A good JSON interpreter can be found at:

http://chris.photobooks.com/json/default.htm or at http://json.parser.online.fr/.

Base64(uri=rtmp://IP/live/myStream localstreamname=testStream) results
in:
dXJpPXJ0bXA6Ly9JUC9saXZlL215U3RyZWFtIGxvY2Fsc3RyZWFtbmFtZT10ZXN0U3RyZW
Ft

http://192.168.5.5:7777/pullstream?params=

dXJpPXJ0bXA6Ly9JUC9saXZlL215U3RyZWFtIGxvY2Fsc3RyZWFtbmFtZT10ZXN0U3RyZW

Ft

http://chris.photobooks.com/json/default.htm
http://json.parser.online.fr/

© 2011 Evostream, Inc. All rights reserved. Page 6 of 17

Document Definitions
EMS EvoStream Media Server

URI Universal Resource Identifier. The generic for of a “URL”.
URI’s are used to specify the location and type of streams.

RTMP Real Time Messaging Protocol – Used with Adobe Flash
players

RTMPT Real Time Messaging Protocol Tunneled – Essentially RTMP
over HTTP

RTSP Real Time Streaming Protocol – Used with Android devices
and live streaming clients like VLC or Quicktime. RTSP does
not actually transport the audio/video data, it is simply a
negotiation protocol. It is normally paired with a protocol like
RTP, which will handle the actual data transport.

RTCP Real Time Control Protocol – An protocol that is typically used
with RTSP to synchronize two RTP streams, often audio and
video streams

RTP Real Time Protocol – A simple protocol used to stream data,
typically audio or video data.

VOD Video On Demand
JSON JavaScript Object Notation

Lua A lightweight multi-paradigm programming language
tcURL Used in the RTMP protocol, this field is used to designate the

URL/address of the originating stream server.
swfURL Used in the RTMP protocol, this field is used to designate the

URL/address of the Adobe Flash Applet being used to
generate the stream (if any).

IDR Instantaneous Decoding Refresh – This is a specific packet in
the H.264 video encoding specification. It is a full snapshot of
the video at a specific instance (one full frame). Video players
require an IDR frame to start playing any video. “Frames”
that occur between IDR Frames are simply offsets/differences
from the first IDR.

© 2011 Evostream, Inc. All rights reserved. Page 7 of 17

Recommended Players
Any players that natively support the target protocol will work with the EvoStream Media Server.

The following players adhere the associated protocols and are fully compatible with the

EvoStream Media Server.

RTMP: Any Flash Based Player (JW Player, Flow player) or Flash Media Player

RTSP: Quicktime, VLC and Android native players

HLS: iPhone, iPad native browser/player

MPEG-TS: Quicktime, VLC

Add Live Streams to the EvoStream Media Server
The EvoStream Media Server (EMS) provides an extremely robust platform for stream protocol re-

encapsulation. That is, the EMS will allow you to translate from one streaming protocol to another

protocol, allowing you to reach a wide range of video/audio clients, regardless of how your

video/audio source is configured. The first step to achieve protocol re-encapsulation is to get the

original stream into the EMS. The most common method for doing this is by using the “Pull

Stream” mechanism, but you can also have other systems push a stream into the EMS.

Pull Stream
The “pullStream” API provides a way to tell the EMS to retrieve an existing stream.

RTMP – Flash

RTSP

RTP - UDP

pullStream uri=rtmp://Adddress/Of/Stream localStreamName=RTMPTest

pullStream uri=rtsp://Adddress/Of/Stream localStreamName=RTSPTest

pullStream uri=rtp://Adddress/Of/Stream localStreamName=RTPTest isAudio=0

spsBytes=Z0LAHpZiA2P8vCAAAAMAIAAABgHixck= ppsBytes=aMuMsg==

© 2011 Evostream, Inc. All rights reserved. Page 8 of 17

MPEG-TS

For UDP MPEG-TS streams, use:

This can be used for multicast streams as well. If the address of the stream is in the IP Multicast

range, the EMS will automatically join the multicast group so that it can pull the stream.

For TCP MPEG-TS streams use:

The “d” in front of mpegts… in the URI’s above refers to “deep parsing”. Using this URI, the

inbound MPEG-TS stream can be re-encapsulated into other protocols, such RTMP or RTSP. If

your only output format will be MPEG-TS (IE, you are using the EMS as an MPEG-TS pass-

through), then you can use mpegtsudp and mpegtstcp as the URI protocol specifier. This will

speed the transfer of the MPEG-TS streams since no parsing will occur.

Push-In
The EvoStream Media Server is capable of receiving streams that are pushed to it from other

servers. An RTMP listener is available on port 1935, an RTSP listener on 5544 and a LiveFLV

listener on port 6666.

You will need to consult with your stream source on how to perform the actual stream push, as

every system has different ways of accomplishing this.

Push-In Authentication

For security, the EMS requires that all streams which are pushed into it be authenticated using

authentication detials that are specified in config/users.lua. You MUST either supply the

authentication details with your Push-In Stream, or disable authentication in the EMS. You can

disable authentication in the EMS by either:

1) Set the boolean value in config/auth.xml to false

2) Change the word “authentication” to something like “authentication_off” inside

config/config.lua

pullStream uri=dmpegtsudp://Adddress.Of.Stream:Port localStreamName=TSTest

pullStream uri=dmpegtstcp://Adddress.Of.Stream:Port localStreamName=TSTest

© 2011 Evostream, Inc. All rights reserved. Page 9 of 17

Playing/Retrieving Live Streams
Once a stream has been added to the EvoStream Media Server (EMS) you can access it in a variety

of ways. Through the magic of the EMS, all you need to do is request the stream in the format that

your player can accept, and the EMS will take care of the rest. The Local Stream Name that you

provided in your pullStream command (or that was pushed to the EMS) is used to identify the

stream you wish to play/retrieve.

RTMP
The formal format of the RTMP URI is as follows:

As an example, to play an RTMP stream, use the following URI in the Flash enabled player:

RTMP streams can also be pushed to other servers:

RTSP
The formal format of the RTMP URI is as follows:*

*Please note that it is very similar to RTMP, except for the absence of the “app Name” field.

As an example, to play an RTSP stream, use the following URI in an RTSP enabled player:

rtmp[t|s]://[username[:password]@]ip[:port]/<appName>/<stream_name>

rtmp://Address.Of.EMS/live/SomeLocalStreamName

pushStream uri=rtmp://DestinationAddress localStreamName=SomeLocalStream

rtsp://[username[:password]@]ip[:port]/[ts|vod|vodts]/<stream_name or MP4

file name>

rtsp://Address.Of.EMS:5544/SomeLocalStreamName

© 2011 Evostream, Inc. All rights reserved. Page 10 of 17

By default, the EMS will send the video/audio payload data via RTP. If you wish to send using

MPEG-TS instead, you simply need to specify it in your request URI:

RTSP streams can also be pushed to other servers:

MPEG-TS
MPEG-TS streams, in general, don’t have the concept of a stream identifier(name). The EMS will

assign a name to an inbound MPEG-TS stream for internal uses, but outside of the EMS, that name

is not used. To obtain an MPEG-TS stream from the EMS, it must be first pushed out to the

network. An example command to do this is:

or

If the UDP destination address is in the multicast range, the pushed stream will be a multicast

stream.

HTTP Live Streaming
HTTP Live Streams (HLS) requires files to be generated from a live stream. Because of this, HLS

streams must be started within the EvoStream Media Server before they can be accessed. These

files must be written into the web root of whichever web server you choose to use. EvoStream

recommends Apache, and if you are using the EMS Installer, Apache will already be installed on

your computer.

rtsp://Address.Of.EMS:5544/ts/SomeLocalStreamName

pushStream uri=rtsp://DestinationAddress/applicationName

localStreamName=SomeLocalStream

pushStream uri=mpegtsudp://DestinationAddr localStreamName=SomeLocalStream

pushStream uri=mpegtstcp://DestinationAddr localStreamName=SomeLocalStream

© 2011 Evostream, Inc. All rights reserved. Page 11 of 17

To create an HLS stream, issue the createHLSStream command:

The corresponding link to use on an iOS device to pull this stream would then be:

This URL breaks down to: http:// My Web Server / HLS Group Name / playlist file name

HTTP Dynamic Streaming
HTTP Dynamic Streams (HDS) requires files to be generated from a live stream. Because of this,

HDS streams must be started within the EvoStream Media Server before they can be accessed.

These files must be written into the web root of whichever web server you choose to use.

EvoStream recommends Apache, and if you are using the EMS Installer, Apache will already be

installed on your computer.

To create an HDS stream, issue the createHDSStream command:

The corresponding link to pull this stream would then be:

This URL breaks down to: http:// My Web Server / HDS Group Name / manifest file name

createhlsstream localstreamnames=SomeLocalStream

targetfolder=/example/webroot groupname=hls playlisttype=rolling

playlistLength=10 chunkLength=5

http://Address.Of.EMS:8080/hls/playlist.m3u8

createhlsstream localstreamnames=SomeLocalStream

targetfolder=/example/webroot/ groupname=hds playlisttype=rolling

playlistLength=10 chunkLength=5

http://Address.Of.EMS:8080/hds/manifest.f4m

© 2011 Evostream, Inc. All rights reserved. Page 12 of 17

Video On Demand
The first critical step to getting Video on Demand (VOD) working is to place all of your media files

into the appropriate directory. By default that directory is the “media” folder in the main

EvoStream Media Server (EMS) folder. If you wish to use a different folder for your media files,

you simply need to modify the “config.lua” file and change the “mediaPath” parameter with your

new path. The config.lua file can be found in the config directory.

RTMP
VOD to RTMP is handled automatically by the EMS, you simply need to provide your player with

the appropriate URI. For Example:

The only trick is in the name of the file. You will have to format your URI depending on the file

type. The following rules will need to be followed:

File Type URI Value

*.flv NameOfFile

*.mp4 mp4:NameOfFile.mp4

*.mov mp4:NameOfFile.mov

*.m4v mp4:NameOfFile.m4v

Therefore, if your target file is “video1.flv”, the connection URI would be:

And if your target file is “video2.mov”, the connection URI would be:

It is also possible to have your media files in subdirectories of the main media file:

rtmp://AdddressOfServer/vod/NameOfFile

rtmp://AdddressOfServer/vod/video1

rtmp://AdddressOfServer/vod/mp4:video2.mov

rtmp://AdddressOfServer/vod/mp4:subFolder1/subFolder2/video2.mov

© 2011 Evostream, Inc. All rights reserved. Page 13 of 17

The EMS dynamically generates “Seek” and “Meta” which allow the client to “click around” in the

video and play from any time-point in the video. Please note that if you move the original video

file on the server, you cannot move the Seek and Meta files along with it. They use absolute file

paths and so must be removed so that they can be regenerated for the video file again.

RTSP with RTP or MPEG-TS
VOD to RTSP is also handled automatically by the EMS, you simply need to provide your player

with the appropriate URI. For Example:

Since the .FLV format is specifically designed for RTMP, you cannot playback FLV files for RTSP.

Any MP4 file, however, can be played with RTSP. This simplifies the format for the VOD request:

It is also possible to have your media files in subdirectories of the main media file:

By default, the EMS will send the video/audio payload data via RTP. If you wish to send using

MPEG-TS instead, you simply need to specify it in your request URI:

The EMS dynamically generates “Seek” and “Meta” which allow the client to “click around” in the

video and play from any time-point in the video. Please note that if you move the original video

file on the server, you cannot move the Seek and Meta files along with it. They use absolute file

paths and so must be removed so that they can be regenerated for the video file again.

rtsp://AdddressOfServer:5544/vod/NameOfFile

rtsp://AdddressOfServer:5544/vod/video1.mp4

rtsp://AdddressOfServer:5544/vod/video2.mov

rtsp://AdddressOfServer:5544/vod/subFolder1/subFolder2/video2.mov

rtsp://AdddressOfServer:5544/vodts/video2.mov

© 2011 Evostream, Inc. All rights reserved. Page 14 of 17

HLS VOD Work Around
HLS is not explicitly designed for traditional VOD. It is designed to take a live stream, convert it to

small files, and then serve those files to iOS devices. iOS devices (such as iPhones and iPads) can

already handle the download and play many audio and video files directly from online sources.

There is, however, a way to do VOD with HLS using the EvoStream Media Server. The trick is to

create a live stream using RTMP first, and then use the new live stream for your HLS stream. It’s

really that simple. Here is an example set of commands:

The corresponding link to access this HLS stream would then be:

pullStream uri=rtmp://AdddressOfServer/vod/mp4:video2.mov

keepAlive=1 localstreamname=DummyLive

createhlsstream localstreamnames=DummyLive bandwidths=128

targetfolder=/var/www/ groupname=hls playlisttype=rolling

playlistLength=10 chunkLength=5

http://YourServer/hls/DummyLive/playlist.m3u8

© 2011 Evostream, Inc. All rights reserved. Page 15 of 17

Recording Streams
The EMS is able to record streams as MP4, FLV or MPEG Transport Stream (TS) files. Any

incoming stream type can be recorded. Recording a stream can be done using the following steps:

Bring a new stream into the EMS. In this case we are pulling a new RTSP stream:

We now have RTSPTest in the server. To record it we issue the record command:

This will cause the EMS to record the source RTSP stream into an MP4 file. The file will be placed

in the media folder of the EMS installation (as per the “../media” parameter). The file will be

named:

RTSPTest.mp4

Or more generically:

LocalStreamName.type

Users may issue the record command before the desired stream is actually available, essentially

queuing the recording. In other words, you could issue the previous two commands (pullstream,

record) in reverse order and achieve the same result.

Stopping Streams
There will likely come a time where you need to stop a stream. There are two general types of

streams: Inbound Streams and Outbound Streams. The directionality is always from the

perspective of the EMS. So therefore an Inbound Stream can also be considered a source stream.

It is important to note that Inbound Streams have both a LocalStreamName and an ID, whereas

Outbound Streams have only an ID.

It is also important to note that stopping an Inbound Stream will automatically shutdown all

associated Outbound Streams.

There are two functions provided for stopping streams: shutdownStream and removeConfig

pullStream uri=rtsp://Adddress/Of/Stream localStreamName=RTSPTest

record localstreamname=RTSPTest pathtofile=../media/ type=mp4

© 2011 Evostream, Inc. All rights reserved. Page 16 of 17

shutdownStream is intended for doing just what it says, shutting down a stream. By setting the

permanently parameter to true, shutdownStream will also remove the configuration entry (if one

exists) in the pullPushConfig.xml file.

removeConfig is intended to remove the entry in pullPushConfig.xml, but it will also stop the

associated stream.

Stopping a Recording
A recorded stream is just like any other stream in the EMS, it simply is directed at a file instead of

towards the network. Users may therefore use either of the normal shutdown stream commands

to stop a recording. This will cause the recording of this stream to stop, which will close the file

that is being written to. All data that had previously been recorded will remain stored in that file.

If the stream had not yet been recorded (because a stream with that name was not yet available)

then the recording will be canceled.

shutdownStream localstreamname=RTSPTest

shutdownStream id=5 permanently=0

removeConfig id=5

© 2011 Evostream, Inc. All rights reserved. Page 17 of 17

Transcoding
Transcoding with the EMS allows you to change the resolution of a source stream, change the

bitrate of a stream, change a VP8 or MPEG2 stream into H.264 and much more. It will also allow

users to create overlays on the final stream as well as crop streams.

Transcoding requires SIGNIFICANT computing resources and will severely impact

performance. A general conservative guideline is that you can accomplish one transcoding

job per CPU core for HD streams.

To transcode an RTMP source into different video bitrates and send back to EMS

To transcode an existing EMS stream into a different audio channel count and send to an RTMP

server

To use files as input and/or output

To stop a running transcoding process(es)

To force TCP for inbound RTSP

transcode source=rtmp://<RTMP server>/live/streamname groupName=group

videoBitrates=100k,200k,300k destinations=stream100,stream200,stream300

transcode source=stream1 groupName=group audioBitrates=copy

audioChannelsCounts=1 destinations=rtmp://<RTMP server 2>

targetStreamNames=streamMono

transcode source=file://C:\videos\test.mp4 groupName=group

videoBitrates=100k audioBitrates=copy

destinations=file://C:\videos\out.mp4

removeConfig groupName=group

transcode source=rtsp://<RTSP server>/live/streamname groupName=group

videoBitrates=copy videoSizes=360x200 $EMS_RTSP_TRANSPORT=tcp

